Машинное зрение

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


В мире очень много вещей, за которыми человеческий глаз просто не успевает следить. Например, в конвейерной технологии ошибки происходят именно из-за человеческого фактора. Человек просто не в состоянии трезво оценивать предметы после нескольких часов работы. Для этого отлично приспособлены роботы. С помощью машинного зрения они могут сделать детальную проверку продукта, сравнить с образцом и моментально принять решение о дальнейшей обработке изделия.

Как это работает?

Машинное зрение - это способность компьютера «видеть». Система машинного зрения использует одну или несколько видеокамер, устройство аналого-цифрового преобразования (АЦП) и цифровой обработки сигналов (ЦОС). Полученные данные поступают в компьютер или робота-контроллера. По степени сложности машинное зрение похоже на распознавание голоса.

Двумя важными характеристиками в любой такой системе являются чувствительность и разрешение. Чувствительность - это способность машины видеть в тусклом свете или различать слабые импульсы в спектре невидимых длин волн.Разрешение - это степень, с которой система различает объекты. Чувствительность и разрешение являются взаимозависимыми параметрами. При увеличении чувствительности, разрешение, как правило, уменьшается, и наоборот, хотя все остальные факторы обычно остаются при этом неизменными.

Человеческие глаза могут различать электромагнитные волны с длиной волны, находящейся в диапазоне от 390 до 770 нанометров. У видеокамер этот диапазон значительно шире, чем это.Например, есть системы машинного зрения, которые могут видеть в инфракрасной, ультрафиолетовой и рентгеновской областях длин волн.

Машинное зрение используется в различных промышленных и медицинских областях:

  • Компонентный анализ
  • Идентификация подписи
  • Оптическое распознавание символов
  • Распознавание почерка
  • Распознавание объектов
  • Распознавание образов
  • Контроль материалов
  • Контроль валюты
  • Медицинский анализ изображения


Источник: neuronus.com

Комментарии: