СЛЕДУЮЩИМ КРУПНЫМ ПРОРЫВОМ В МЕДИЦИНЕ СТАНЕТ ИСПОЛЬЗОВАНИЕ ИИ |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-05-24 19:02 СЛЕДУЮЩИМ КРУПНЫМ ПРОРЫВОМ В МЕДИЦИНЕ СТАНЕТ ИСПОЛЬЗОВАНИЕ ИИ За последние несколько десятков лет медицинские исследования перешли от лечения временных заболеваний к лечению долговременных. Это дело, построенное на усилиях таких людей, как Листер, Пастер и Солк, было медленным и трудным, и большое количество перспективных препаратов и методов лечения в конечном итоге провалили клинические испытания. Расцвет антибиотиков постепенно затухает, но мы по-прежнему находим новые способы борьбы с заболеваниями. Что дальше? Думаю, это искусственный интеллект. ИИ готов выступить в качестве умножающей силы для любой области медицины, потому что вместо того, чтобы быть полезным в отношении одного вида заболевания — как антибиотики или излучение — ИИ может работать вместе с людьми, принимая все более взвешенные решения с каждым днем, независимо от области применения. Точно так же, как противомикробные агенты являются следствием и спутником микробной теории, есть все причины полагать, что ИИ поможет нам применить наше знание «омик» (геномики, протеомики, метаболомики и так далее) к человеческому здоровью. Мы начали напрямую взаимодействовать с информацией, заключенной в геноме, так что самой собой разумеется, что следующим большим скачком будет обработка этой информации. Многофакторный анализ на сегодняшний день является наибольшей силой ИИ, поскольку позволяет ему принимать в некотором роде контекстуальные решения, подобно тому, как это делают люди, а также подключать эйдетическую память жесткого диска. В его анализе отсутствуют эмоции, а также намеренные пропуски, вызванные потерей концентрации. ИИ не нуждается во сне, а также не устает, если занимается чем-то определенным долгое время. В то же время ИИ имеет преимущества массивной параллельной обработки данных. Его способность ворочать огромными объемами данных растет, и он действительно может объять необъятное, в отличие от людей. При достаточной памяти и вычислительной силе, медицинский ИИ может удерживать в контексте целое фамильное древо медицинских записей, искать в базах данных для точной диагностики и привлекать огромное количество медицинских и социальных ресурсов — и все это в одночасье. Прежде чем мы поговорим об этом, давайте определим ИИ как компьютеризированную систему, которая может выполнять задачи, требующие обычно человеческого интеллекта, вроде речи и распознавания изображений, перевода языков или принятия решений. Но у таких систем есть разные степени сложности, и они могут в большей или меньшей степени полагаться на компьютеры, зависимо от того, какую задачу в настоящее время люди ставят перед компьютерами. Пока мы не доверяем ИИ достаточно, чтобы дать им полную автономию; даже в самолетах с автопилотом всегда находятся обученные люди, пилоты. Бывают и умные системы, работающие в режиме реального времени, которые имеют разные степени интеллекта и автоматизма — вроде самоуправляемых автомобилей Google. Именно техника принятия взвешенных решений на дюйм приближает ИИ к человеческому уровню осведомленности о ситуации. Уровень развития Программное обеспечение с ИИ в виде приложений для здоровья полагается по большей части на его способность запоминать и проводить параллели, и все больше — на его способность подходить к каждому индивидуально, свободно общаться на естественном языке и обрабатывать большие данные. Люди используют контекст, чтобы определить значение многозначных слов или событий, а с обработкой естественного языка это может и ИИ. И эти системы уже используются сегодня. Среди достойных упоминания примеров — партнерство IBM Watson и Sloan-Kettering, а также медицинский ИИ под названием Praxis. Watson прославился благодаря своей победе в викторине Jeopardy! (наш аналог — «Своя игра») и прекрасной игре в шахматы. Он хорошо разбирается в теории игр, а также способен изучать и анализировать новую информацию, и теперь применяет свои таланты в качестве диагноста. Watson также работает с группой Wellpoint, и Самуэль Нессбаум из Wellpoint говорит, что в ходе испытаний Watson поставил 90% правильных диагнозов для рака легких, в то время как врачи смогли справиться лишь с 50% случаев. IBM, Sloan-Kettering и Wellpoint пытаются использовать Watson как диагностическую помощь на облачной основе, доступную любому врачу или больнице, готовой платить. Но даже Watson с его внушительными талантами не создавался для медицины. Чтобы увидеть медицинский ИИ в действии, нужно посмотреть на Praxis: программное обеспечение, созданное для обработки медицинской документации и записей. Он использует модель обучения, которая записывает голосовые или печатные вводные данные врача, а затем классифицирует их в сети семантических узлов, основываясь на том, насколько точно слова или фразы, связанных с концептами программы, совпадают с теми, что программа уже видела. Praxis запоминает эти отношения и чем больше работает, тем умнее становится. Компания 23andMe, расположенная в Маунтин-Вью, Калифорния, предоставляет частным заказчикам информацию об их предрасположенности к заболеваниям на основании анализа предоставленного биоматериала на однонуклеотидный полиморфизм по нескольким тысячам SNP. Изначально 23andMe была очень амбициозной в своих заявлениях, поэтому в итоге столкнулась с проблемами с FDA, а в 2015 году еще и вышла на неокупаемость, но цель — определять для пациентов факторы риска, скрытые в геноме — была прекрасной. Можно ли делать это другим методом, отличным от 23andMe? Возможно. Генетически персонализированная медицина уже может объяснить однонуклеотидные мутации, которые нарушают функцию лекарственного средства, что и было продемонстрировано на примере одной из форм лейкемии. Интегрированный, развивающийся ИИ Важная особенность умножающей силы в конечном счете заключается в том, что она уменьшает количество энергии, которое вам нужно потратить, чтобы сделать работу. И вот здесь ИИ действительно может преуспеть: выгрузить работу из мозгов в кремний. Программисты проделали длинный путь, создавая логически последовательное программное обеспечение, совместимое с внешним контролем. Сейчас же нам нужно двигаться вперед, к более независимым, надежным, компьютеризованным системам управления, которые смогут свободно интегрировать ввод данных из окружающей среды, человеческое направление и собственное программное управление. Уровень развития ИИ уже неплох, все готово, осталось только решить, как развивать его дальше. Представьте себе ИИ, работающий с крупной базой данных клиники, занимающейся вышеупомянутым изучением геномики. Эта система прямо напрашивается на контроль со стороны ИИ — позволить лабораторным техникам вручную собирать последовательности ДНК будет бесчеловечно, даже если они каким-то образом начнут говорить на Python. Управляющий базой данных ИИ будет хранить актуальные последовательности ДНК, а также отслеживать, какие последовательности ДНК к каким заболеваниям приводят, и даже сопоставлять их с жизненной ситуацией пациента, воздействием на него окружающей среды и с остальными факторами. Для врачей и ученых, которые делают запрос в базе данных, он даже может создавать наглядные визуализации. Такая система станет уверенным шагом по направлению к ИИ, управляющему медицинскими записями, и снимет с людей колоссальный объем работы. Представьте себе программное обеспечение Praxis, о котором мы говорили выше, которое подружилось с контроллером ИИ, ведущим генетическую базу данных. Такое ПО сможет выслушать повествование пациента, добавить его к карте пациента и предложить врачу диагнозы. Кроме того, оно сможет собрать достаточное количество описаний симптомов, чтобы провести между ними параллели и уточнить базу данных в любой момент, когда что-то найдет. Медицинская визуализация — еще один момент, где аппаратное и программное обеспечение смогут работать совместно с профессиональными медиками над тем, чтобы сделать систему чем-то большим, чем просто сумма ее частей. Ученые уже работают над совмещением математического подхода с современной медицинской визуализацией, чтобы получить более точные и конкретные интерпретации снимков, полученных с помощью МРТ. Продолжительный сбор данных о личной среде пациента в сочетании с системой, которая сможет тщательно анализировать эти данные, сделают диагностику более точной. А теперь представьте, что можете объединить все эти понятия: программное управление, полезное оборудование и визуализацию. Продукт может дополнить урезанную инфраструктуру больницы, которая чаще занимается заботой о пациентах, которые нуждаются в более интенсивном уходе — для качественной диагностики на дому подойдет и робот. Линия между программным и аппаратным обеспечением с этого момента начнет размываться. Безопасность превыше всего Сила продвинутого ИИ, способного анализировать кучу данных в контексте, и тонкий доступ к вашей биометрике и геному может затмить разум. Но что, если кто-то украдет вашу личность с вашей отсканированной сетчаткой глаза? Подобная технология может породить благодатную почву для преступлений. Кому будут принадлежать все эти данные? Достаточно продвинутый ИИ может обрабатывать любое число данных в контексте, беспристрастно их взвешивая и осуществляя множество параллельных процессов. Его суждения и время отклика могут быть сверхчеловеческими. Он также сможет выявлять взаимосвязи, которые слишком разделены, чтобы попасть в прицел человеческого внимания. Но чем больше система, тем больше у нее уязвимостей, и достаточно продвинутый, чтобы делать все это, искусственный интеллект может оказаться крепко завязанным в тирании алгоритмов. Что будет с пациентом, если ИИ будет взломан, заражен или просто начнет работать неправильно? Как много свободы мы должны ему дать? Что, если мы просто переоценим способности ИИ? Как показывают исследователи ИИ, вместе с углублением нашего понимания интеллекта и машинного обучения растет и количество возможных приложений и применений. Ставки применения искусственного интеллекта в медицине настолько высоки, что мы должны действовать точно и взвешенно. Эта революция осуществится не за год и не за два. Долгосрочная интеграция ИИ в разнообразные ячейки медицины произведет революцию, которой мир не видел со времен открытия антибиотиков или микробной теории. Сумма человеческих знаний, сумма технологий, помноженные на применение к геному отдельного индивида или конкретной ситуации, могут дать значительно лучшие результаты, чем те, что мы видим сегодня. Источник: nadym.pro Комментарии: |
|