Как работает киберпротез? - ПостНаука |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2016-04-28 20:08 «В расшифровке мысленных команд нет никакой мистики. Предварительно человеку предлагается много раз мысленно воспроизводить нужные движения, при этом алгоритмические системы распознавания образов находят соответствие между этими намерениями и определенными признаками в электрической активности его мозга». Киберпротезы - это продукт нескольких дисциплин: медицины, нейрофизиологии, инженерии и программирования. Это протезы нового поколения, в которые встроены механизмы автоматического управления, ведь, когда человек переставляет ногу при ходьбе, он не думает о том, какова совокупная работа по переносу ступни, изменению ее наклона в цикле шага, синхронному изменению угла сгибания в колене и так далее. Все перечисленное - это автоматические механизмы. На сегодняшний день самое лучшее, что может позволить себе большинство инвалидов, потерявших, например, ногу от колена, - это прикрепленный к культе бедра вертикальный стержень с присоединенной внизу на шарнире горизонтальной планкой, заменяющей ступню. Проблема таких механических протезов заключается в том, что человек вместо ноги получает механический упор, который усилием оставшихся мышц переносит в цикле шага. Киберпротез, оснащенный движителями и аккумулятором, - это фактически самостоятельно шагающая нога. Плотно присоединенный к культе протез не только будет требовать меньше усилий при ходьбе, но сделает движение человека более естественным и удобным. При этом темп, размер шага и другие параметры движения могут быть подогнаны для конкретного пользователя. Однако даже точно настроенный протез, позволяющий человеку без палочки и костылей с легкостью ходить по ровной поверхности, не справится, если потребуется идти по ступеням или повернуть в ту или иную сторону. Для каждого нового режима движения свои настройки. Переключение режимов движения протеза уже не может быть автоматическим, так как намерение изменить движение рождается в голове у человека, киберпротезу об этом не может быть известно. Таким образом, совершенные киберпротезы при всех своих автоматических механизмах должны еще иметь систему управления непосредственно от мозга, хотя бы для переключения режимов. К счастью, к настоящему времени разработана специальная технология - интерфейс «мозг - компьютер», позволяющий на основе регистрации биопотенциалов мозга считывать простейшие команды человека (налево-направо, вперед-назад и так далее). Преобразованные в сигналы для механизмов протеза, они позволяют переключать режимы его активности. Таким образом, человек может прямо по ходу движения естественным образом, то есть мысленными командами, регулировать режимы протеза в зависимости от характера местности и цели своего движения, не используя для этого какие-то дополнительные пульты управления. В расшифровке мысленных команд нет никакой мистики. Предварительно человеку предлагается много раз мысленно воспроизводить нужные движения, при этом алгоритмические системы распознавания образов находят соответствие между этими намерениями и определенными признаками в электрической активности его мозга. Натренированные таким образом алгоритмы в дальнейшем, уже при свободном проявлении намерений человека по ходу движения, с хорошей надежностью детектируют признаки того или иного намерения в коррекции движения, которые тут же транслируются к протезу как команды для переключения его автоматики в нужный режим: движение вверх по лестнице, поворот направо и так далее. Такие же принципы управления закладываются и в киберпротезы верхних конечностей. Например, в протезы кисти встраиваются 5-6 моторчиков, которые хорошо управляют пальцами. На рынке уже имеются киберпротезы кисти с управлением их режимами, хотя пока не от мозга, но от самих оставшихся на конечности мышц. Перспективы использования технологии нейроинтерфейсов Полнофункциональные киберпротезы еще не сделаны, но во многих лабораториях мира, в том числе и в нашей, уже идет исследовательская работа в этом направлении. Что касается самой технологии регистрации электрической активности мозга, то она взята из медицины и в настоящее время очень практична: на голову накладывается несколько датчиков, надевается специальная шапочка со встроенными в нее несколькими сенсорами биопотенциалов, которые соединены с тут же расположенным процессорным устройством, расшифровывающим эти биопотенциалы и передающим команды для исполнительных устройств. Конечно, есть перспективы использования таких технологий «мысленного» управления автоматикой не только для пациентов, потерявших конечность. Можно, например, вынести такое управление за тело человека: управлять внешними исполнительными устройствами. Возможно, это будет хорошим решением для разных сфер гражданской и военной индустрии, например для удаленного управления разного рода кибернетическими устройствами - от манипуляторов до роботов. Киберпротезы могут заменять не только утраченные конечности. Всем известно, что уже много десятилетий при некоторых сложных хирургических операциях приходится останавливать сердце. В это время к человеку подключают фактически протез сердца, который в ходе операции выполняет его функцию - перекачивает кровь. Однако мало кто называет киберпротезом этот аппарат искусственного комплекса «сердца - легкие», потому что по габаритам он скорее напоминает шкаф, чем само сердце. В этом проблема - сделать подобные комплексы малогабаритными, встраиваемыми прямо в организм. Это касается не только сердца, но и любых других органов: печени, почек, поджелудочной железы и других. Мне представляется, что наука и технологии уже очень близко подошли к тому, чтобы создать компактные протезы внутренних органов. И уже практически устранены основные трудности создания искусственных схем управления этими органами непосредственно от мозга на основе технологии интерфейсов «мозг - компьютер». Исключением в этом движении к протезированию органов является, скорее всего, сам мозг, потому что мозг - это информационно-аналитическое устройство. В нем хранится память, навыки, масса информации, фактически наши знания о мире. Какой бы совершенной ни была электроника искусственного кибермозга, в него не удастся перенести опыт жизни отдельного человека. Это не кибернетическая нога, которая не требует переноса в нее памяти естественной ноги для выполнения опорной функции. Поэтому тотальное протезирование мозга человека, скорее всего, невозможно. Разве что протезированию поддадутся отдельные области мозга, очень ограниченные в размерах и по выполняемой функции. Если вы хотите узнать больше об основных вопросах, связанных с современными нейротехнологиями и расшифровкой мозговой активности, записывайтесь на интенсив Александра Каплана «Нейроинтерфейсы: новые технологии контакта с мозгом», который состоится 14 мая в Академии ПостНауки. Источник: postnauka.ru Комментарии: |
|