10 трендов аналитики социальных медиа в 2016 году

МЕНЮ


Искусственный интеллект
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


10 трендов аналитики социальных медиа в 2016 году

1. Многоязычность – как правило

Хоть и остаются средства аналитики, поддерживающие только английский язык, руководствующиеся принципом, что лучше хорошо оперировать одним языком, чем сразу многими, но уже существующие средства Машинного Обучения (МО) позволяют в должной мере реализовать многоязычную аналитику, делая её новым всеобщим стандартом. Но если вам как раз нужен анализ информации на нескольких языках, то не теряйте бдительности: многие поставщики аналитики сильны в своём основном языке, а в остальных – не особо. Выбирайте с умом.

2. Контент-аналитика получит всеобщее признание

Использование контент-аналитики – ключ к качественной поддержке пользователей, исследованиям рынка, сбору мнений, digital-аналитике и параметризации средств медиа, а поставщики подобных услуг активно конкурируют друг с другом в качестве предоставляемого анализа. Создавать собственную систему или же подписаться на уже существующую – выбор ваш, и у обоих вариантов есть свои плюсы. И хоть подобный тренд и можно назвать количественным качеством, реально значимым является тот факт, что анализ текста наконец признан как полноценное решение для бизнеса.

3. Взаимодействие машинного обучения, статистики и языковой инженерии

Будущее принадлежит углубленному анализу, рекуррентным нейронным сетям и им подобным, но в настоящем господствуют уже утвердившиеся способы языковой инженерии. Имеются ввиду таксономия, парсеры, лексические и семантические сети. Таким образом, мы получаем рынок, в котором “расцветают сотни цветов и соперничают сотни школ…” и все эти подходы могут мирно друг с другом уживаться. И даже такая компания, как CrowdFlower перенимает методы машинного обучения, а стартап Idibon привлекает клиентов совмещением классических методик и последних инноваций: “Вы можете создавать собственные таксономии и использовать их в комплексе с принципами машинного обучения и имеющимися базами данных и словарями”.

4. Анализ изображений входит в мейнстрим

Ведущие поставщики аналитики уже используют технологии анализа изображений — например Pulsar и Crimson Hexagon, и способность анализировать изображения при помощи глубинного анализа был одним из ключевых факторов в приобритении компанией IBM AlchemyAPI. А новый, перспективный стартап MetaMind, запущенный в 2015 году, заявляет анализ изображений своей основной возможностью, так как видит в этом большие перспективы и возможности.

5. Прорыв в автоматическом анализе речи и видео

«Всеканальная» аналитика вкупе с полным процессом принятия решения о покупке потребителем – любимая тема рынка. А социальные сети, где люди чаще всего высказывают своё мнения, – до краёв наполнены видеозаписями. Произносимые слова и нетекстовые элементы речи, такие как интонация, скорость произношения, громкость и повторяемость – несут определённый смысл, доступный для средств речевого анализа и переведения в текст. Предполагаем, что в 2016 году сфера употребления подобных средств значительно расширится и ими начнут пользоваться маркетологи, редакторы и специалисты по маркетинговым исследованиям. Также анализ речи будет, скорее всего, использован для повышения качества компьютерных интерфейсов взаимодействия (включая и чат-боты).

6. Расширенный анализ эмоций

Специалисты по рекламе уже давно понимали, что во время покупки человеком движут эмоции, но до недавнего времени систематическое изучение реакций было вне технологической досягаемости. В зависимости от вашей перспективы, начните пользоваться анализом эмоций или же анализом тональности. Эмоциональное состояние устанавливается на основе изображения с помощью анализа черт и выражения лица (или же из речи или текста), с целью структуризации реакции человека на то, что он видит, слышит или читает. Подобные услуги для видеозаписей уже предоставляют Affectiva, Emotient, Realeyes, Beyond Verbal для речи, и Kanjoya для текста; количество пользователей подобных средств быстро растёт и используется многими агентствами, маркетологами, СМИ и специалистами по рекламе.

7. Анализ эмодзи (смайликов)

Нам подвластно огромное количество каналов информации – текст, изображения, речь, видео и лайки. Зачем же тогда пользоваться эмодзи? Да потому что они классные и выразительные! Как и , они представляют собой более развёрнутые формы контента. Вот почему интернет-слэнг уже почти мёртв (ROFL!) и Facebook экспериментирует с реакциями на эмодзи, и появляются различные алтернативы, вроде стикеров Line. Вполне очевидно, что аналитика эмодзи становится просто необходима. Нужные технологии уже используются различными стартапами навроде Emogi. И хоть большинство проектов пока не выходит за рамки подсчёта и классификации эмодзи, — например, подобным анализом занимается инженер Instagram Томас Димсон и исследовательская организация CLARIN.SI, — и некоторые из них, как например SwiftKey, однозначно достойны внимания.

8. Большая извлекаемость информации из сетевого контента

Этими словами можно охарактеризовать общие информационные тенденции 2016 года, и именно такой заголовок я дал интервью с Прайритом Суудом, специалистом по изучению данных в TNS. Прайрит подмечает, что, “Сеть даёт диалогу структуру, а извлечение контента придаёт ему значение”. Полезная информация добывается путём понимания контента и взаимосвязей с ранее полученной информацией, а также пониманием механизма появления этих взаимосвязей. Так что добавьте в свой инструментарий средства по визуализации сетевого контента ведь именно поэтому компании вроде Neo4j, js, и Gephi (и это ещё далеко не все) настолько успешны. Применение платформы анализа данных, такой как QlikView – возможный вариант, который можно использовать вместе со средствами цифровой и текстовой аналитики: ещё один пункт в списке дела на 2016.

9. В 2016 году вы будете потреблять гораздо больше автоматически генерируемого контента

Технология для автоматической генерации контента называется Natural Language Generation (NLG) и даёт возможность составлять статьи, e-mail’ы, текстовые сообщения и переводы автоматически, исходя из анализируемого текста, грамматических правил и контекста. NLG – оптимальное решение для частого, повторяющегося контента, такого как, например, новости спорта, финансов и прогнозы погоды. Подобные услуги предоставляют Arria, Narrative Science, Automated Insights, Data2Content, и Yseop. Также можно воспользоваться и “услугами” своего любимого виртуального помощника — Siri, Google Now, Cortana, или Amazon Alexa, или же автоматической системы обслуживания покупателей. Подобные системы попадают в категорию Natural-Language Interaction (NLI), и сервисы вроде Artificial Solutions будут однозначно полезны.

10. Машинный перевод повзрослеет и остепенится

Мы уже давно мечтаем об универсальном межъязыковом переводчике (как в фильмах про Star Trek), но хоть исследователи уже в 50-х годах прошлого века заявляли, что проблема машинного перевода будет разрешена в течение 3-5 лет, но качественный машинный перевод оказался целью куда более труднодостижимой целью, чем они думали. Не будем утверждать, что полное разрешение вопроса уже на горизонте, но благодаря Big Data и машинному анализу, 2016 (или 2017) станет тем самым годом, когда машинный перевод с самых распространённых языков мира наконец станет достаточно хорош для выполнения большинства задач. И это радует!

Комментарии: