Автомобили на улицах предсказали политические предпочтения жителей района |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2017-12-01 12:25 Американские исследователи создали компьютерную модель, которая умеет предсказывать политические предпочтения граждан по их автомобилям. Для этого они проанализировали 50 миллионов изображений Google Street View, сделанных в 200 американских городах, а также данные о переписи населения. Об этом сообщается в статье, опубликованной в журнале Proceedings of the National Academy of Sciences. Для сбора демографических данных (например, во время переписи населения) обычно используют многочисленные бумажные или электронные опросники, которые заполняют либо сами жители, либо специалисты во время интервью. Такие данные необходимы для социоэкономических исследованиях, сосредоточенных на изучении различных показателей жизни граждан — тем не менее, традиционные методы их сбора и анализа неэффективны в плане огромного количества затрат (как времени, так и финансов). Современные технологии, однако, позволяют облегчить этот процесс с помощью автоматической обработки общедоступной информации: так, например, с помощью данных о пользователях Twitter можно вычислить безработных. В своей новой работе исследователи под руководством Ли Фей-Фея (Li Fei-Fei) из Стэндфордского университета использовали данные об автомобилях жителей США для предсказания демографических показателей в округе. Проанализировав изображения местности, исследователи получили отдельные изображения 22 миллионов автомобилей, что примерно равняется 32 процентам всех зарегистрированных транспортных средств на территории попавших в выборку городов. Это удалось сделать благодаря алгоритму распознавания, который классифицирует объекты на основе признаков, полученных при анализе объектов (в данном случае — транспортных средств) из обучающей выборки. Последующий анализ изображений автомобилей был проведен при помощи сверточных нейронных сетей — самого эффективного на сегодняшний день алгоритма распознавания изображений. Этот алгоритм помог классифицировать транспорт по типу (например, легковой автомобиль, грузовик или минивэн), производителю, модели и году выпуска. Ученые затем составили базу данных, содержащую информацию о распределении автомобилей определенного типа в 200 городах. Кроме того, в базу данных была включена информация о распределении расы, уровня образования и среднего годового дохода жителей. База данных затем была разделена на две выборки: обучающую (35 городов) и тренировочную (165 городов). Исследователям удалось обучить простую линейную модель по типами и моделями автомобилей в городах определять демографические показатели их жителей. Сравнение полученных результатов с реальными данными указало на валидность используемого метода: так, например, годовой доход был правильно определен с вероятностью 82 процента, а факт окончания школы жителей — с вероятностью 65 процентов. В прошлом году ученые создали карту, на которую поместили данные о численности жителей крупных городов, собранные за последние 6000 лет. Об этом вы можете прочитать здесь. Елизавета Ивтушок Источник: nplus1.ru Комментарии: |
|