Простая нейронная сеть без библиотек и матриц. Обучение с учителем

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Некоторое время назад у меня впервые зародилось желание написать свою нейросеть и поэкспериментировать с ней, с тех пор я собирал попадающуюся мне информацию, но до дела у меня дошли руки только сейчас. Я твердо решил написать свою нейросеть с блекджеком, с разными методами обучения и без сторонних библиотек. Собственно это я и сделал, а так как у меня самого опыта в этом еще не было, я подумал, что это может быть полезно и для других людей, которые хотят в этом разобраться. Хочу сказать, что смысл этой статьи не в самом оптимизированном способе создания нейросетей, а в способе понять, что такое нейросети и наконец перейти к практике. Итак, поехали.

Немного необходимой теории.

Вероятно вы уже множество раз прочитали что?нибудь подобное, так что постараюсь покороче. Говоря простым языком: нейронная сеть — несколько слоев, состоящих из искусственных нейронов и синапсов, которые их соединяют.Значение нейрона формируется из активированной суммы дочерних нейронов, умноженных на вес их синапсов. Первый (следующий после нулевого) слой формируется из активированных входных данных, тоже умноженных на веса синапсов. Обычно веса синапсов изначально генерируются случайно, а потом корректируются в зависимости от процесса обучения. «Активированное значение» — значение, которое преобразовано с помощью выбранной функции активации.

Почти переходим к практике

Дело в том, что когда я «твердо решил написать свою нейросеть», я совершенно не подумал о том, какую задачу эта нейросеть будет решать, так что это я решил на ходу:

Задумавшись над задачей для нейронной сети, я решил выбрать что?нибудь подходящее под два критерия: наглядное, чтобы на выходом было какое?то графическое действие и не очень тяжелое, ибо мой текущий компьютер не справится. После длительного отбора идей, я вспомнил статью про эксперименты над обучением одноклеточных организмов и пришел к выводу, что правильным решением будет создать примитивную нейросеть, которая будет выполнять роль клетки в чашке Петри. Предварительный анализ задачи показал, что логичней будет ограничить поле зрения: я выбрал поле 5 на 5 вокруг клетки. В итоге я решил сделать нейронную сеть, имеющую входной слой в 25 нейрона, скрытый в 16 и выходной слой в 14. Почему именно столько? В конструировании нейросетей нет четких правил, но для нашей задачи больше одного слоя не требуется (вообще эта задача может решаться без скрытых слоев вообще, но тогда у нейросети будут очень примитивные решения) количество нейронов в скрытом слою, принято делать между количеством во входном и выходном, а дальше корректировать, в зависимости от эмпирических данных, так что спустя несколько попыток, я выбрал именно 16. Ещё нужна функция активации, чтобы значение нейрона для удобства варьировалось между -1 и 1. Я выбираю стандартный гиперболический тангенс, который на самом деле является модифицированной экспонентой.

Пишем код

Писать я буду на python, хотя принцип остается тем же и для других языков. Обычно для нейронных сетей используют NumPy с его многомерными массивами, но мне показалось, что для первой нейросети это слишком не наглядно, так что, вдохновившись идеей о создании нейросети методами ООП, я решил реализовать ее через классы. Что я имею ввиду? Я создам класс нейросети, а потом уже буду с этим работать. Нейросеть должна содежать форму(кол?во слоев и нейронов в них) и массив синапсов.

import math import random  activation = math.tanh  class NeuralNetwork:     def __init__(self, neurons_size:list, weights:list=None):         self.neuron_size = neurons_size         for i in range(len(neurons_size)-1):#добавляем нейрон смещения в форму нейросети             self.neuron_size[i] += 1          if weights is None:#если веса не заданы             self.weights = []             #создаем случайные веса             for i in range(len(neurons_size)-1):                 self.weights.append([[random.uniform(-1, 1) for x in range(neurons_size[i+1])] for y in range(neurons_size[i])])         else:             self.weights = weights
Мне понравилась эта картинка для объяснения, что такое нейрон смещения.
Мне понравилась эта картинка для объяснения, что такое нейрон смещения.

Добавляем функцию вывода. Вывод каждого нейрона считается по формуле - activation(?neuron * weight)(активированная сумма всех нейронов предыдущего слоя умноженных на соответствующие веса):

    def out(self, inp):         out=[inp + [1]]# + [1] - это добавление нейрона смещения         for i in range(1, len(self.weights)+1):             a = []             for j in range(self.neuron_size[i]):                 s = sum([out[i-1][k] * self.weights[i-1][k][j] for k in range(self.neuron_size[i-1])])                 a.append(activation(s))             if i != len(self.weights):                 a += [1]             out.append(a)         return out

Функция принимает параметр inp – массив входных значений. Функция возвращает массив значений нейронов.

Самая важная функция - обучение обратным распространением ошибки:

    def correct(self, inp, answer, learning_rate=0.1):         out = self.out(inp)         errors = [[answer[i] - out[-1][i] for i in range(len(out[-1]))]]#считаем ошибку            #считаем ошибку каждого нейрона         for i in range(len(self.weights) - 1, 0, -1):             a = []             for j in range(self.neuron_size[i]):                 s = sum([errors[0][k] * self.weights[i][j][k] for k in range(self.neuron_size[i + 1])])                 a.append((1 - out[i][j] ** 2) * s)#корректируем ошибку с производной функции активации(если у вас не tanh - измените)             errors.insert(0, a)          #обновляем веса         for i in range(len(self.weights)):             for j in range(self.neuron_size[i]):                 for k in range(self.neuron_size[i + 1]):                     self.weights[i][j][k] += learning_rate * errors[i][k] * out[i][j]          error_count = sum([sum(abs(en) for en in el) for el in errors])         return out, error_count
Полный код нейросети (добавил несколько функций для удобства)

import math import random import time import datetime import json from copy import copy  activation = math.tanh deactivation = math.tanh  class NeuralNetwork:     def __init__(self, neurons_size:list, weights:list=None):         self.neuron_size = neurons_size         for i in range(len(neurons_size)-1):             self.neuron_size[i] += 1          if weights is None:             self.weights = []             for i in range(len(neurons_size)-1):                 self.weights.append([[random.uniform(-1, 1) for x in range(neurons_size[i+1])] for y in range(neurons_size[i])])         else:             self.weights = weights              def out(self, inp):         out=[inp + [1]]         for i in range(1, len(self.weights)+1):             a = []             for j in range(self.neuron_size[i]):                 s = sum([out[i-1][k] * self.weights[i-1][k][j] for k in range(self.neuron_size[i-1])])                 a.append(activation(s))             if i != len(self.weights):                 a += [1]             out.append(a)         return out                  def correct(self, inp, answer, learning_rate=0.1):         out = self.out(inp)         errors = [[answer[i] - out[-1][i] for i in range(len(out[-1]))]]          for i in range(len(self.weights) - 1, 0, -1):             a = []             for j in range(self.neuron_size[i]):                 s = sum([errors[0][k] * self.weights[i][j][k] for k in range(self.neuron_size[i + 1])])                 a.append((1 - out[i][j] ** 2) * s)             errors.insert(0, a)          for i in range(len(self.weights)):             for j in range(self.neuron_size[i]):                 for k in range(self.neuron_size[i + 1]):                     self.weights[i][j][k] += learning_rate * errors[i][k] * out[i][j]          error_count = sum([sum(abs(en) for en in el) for el in errors])         return out, error_count      def save(self, name):         with open(name, 'w') as f:             neuron_size = copy(self.neuron_size)             for i in range(len(neuron_size) - 1):                 neuron_size[i] -= 1             f.write(json.dumps({'shape': neuron_size, 'weights': self.weights}))      def open(name):         with open(name, 'r') as f:             data = json.loads(f.read())             return NeuralNetwork(data['shape'], data['weights'])      def show(self, name):         import matplotlib.pyplot as plt         import networkx as nx         from networkx.drawing.nx_agraph import graphviz_layout          G = nx.DiGraph()          for layer in range(len(self.neuron_size)):             for neuron in range(self.neuron_size[layer]):                 G.add_node((layer, neuron))          for layer in range(len(self.neuron_size) - 1):             for from_neuron in range(self.neuron_size[layer]):                 for to_neuron in range(self.neuron_size[layer + 1]):                     weight = self.weights[layer][from_neuron][to_neuron]                     G.add_edge((layer, from_neuron), (layer + 1, to_neuron), weight=weight)          pos = graphviz_layout(G, prog='dot', args="-Grankdir=LR")          edge_widths = [2 + abs(G.edges[edge]['weight']) for edge in G.edges]         edge_alpha = [abs(activation(G.edges[edge]['weight']))/2 for edge in G.edges]         edge_colors = ['green' if G.edges[edge]['weight'] >= 0 else 'red' for edge in G.edges]          nx.draw_networkx_nodes(G, pos, node_size=300, node_color='skyblue', alpha=0.8)          nx.draw_networkx_edges(G, pos, width=edge_widths, alpha=edge_alpha, edge_color=edge_colors, arrows=True)          layer_labels = {}         for layer in range(len(self.neuron_size)):             for neuron in range(self.neuron_size[layer]):                     layer_labels[(layer, neuron)] = f"{neuron}"         nx.draw_networkx_labels(G, pos, labels=layer_labels, font_size=12, font_color='r')          plt.axis('off')         plt.title(f"Neural Network Weights")         plt.savefig(f'{name}.png') 

На этом сама нейросеть закончена, пора приступать к разработке среды обучения. Подробное описание процесса разработки среды не имеет ценности для темы, так что я просто опишу принцип работы:

Изначально создается массив, который является картой среды. Массив изначально состоит из 0.1, а потом каждый ход наполняется 1 и -1 случайным образом. Также создается клетка, которая управляется нейросетью, которой на вход подается массив из значений полей в квадрате 5*5, а на выходе число от 0 до 3, обозначающие ход (0 — шаг вверх, 1 — вниз, 2 — вправо, 3 — влево). Проверяется по одной клетке вокруг клетки и если находится 1 — то по этому направлению применяется положительное подкрепление, а если -1 — то отрицательное. Также я добавил к этому графический интерфейс на tkinter.

Таким образом происходит обучение, что наглядно видно на графике, который строится автоматически. График строится на основе значений положительного и отрицательного подкрепления за ход. Рост графика означает преобладание положительного подкрепления над отрицательным.

Код среды

from neuro import NeuralNetwork from tkinter import * import matplotlib.pyplot as plt import matplotlib.animation as animation import random import asyncio  mind = NeuralNetwork([25, 4]) canvas_size = 1280 realsize = 32  pix = canvas_size / realsize  canvas = [[0.1 for x in range(realsize)] for y in range(realsize)] cellx, celly = 15, 5   def cellvision(vis): 	global cellx 	global celly 	global canvas 	inp = []  	if vis != -1: 		for j in range(vis): 			for i in range(vis): 				inp.append(canvas[int(cellx - vis // 2 + i) % realsize][int(celly - vis // 2 + j) % realsize]) 		return inp  	inp.append(canvas[int(cellx + 0) % realsize][int(celly - 1) % realsize]) 	inp.append(canvas[int(cellx + -1) % realsize][int(celly + 0) % realsize]) 	inp.append(canvas[int(cellx + 1) % realsize][int(celly + 0) % realsize]) 	inp.append(canvas[int(cellx + 0) % realsize][int(celly + 1) % realsize])  	return inp   def move(out): 	global cellx 	global celly 	if out == 0: 		celly -= 1 	if out == 1: 		cellx -= 1 	if out == 2: 		cellx += 1 	if out == 3: 		celly += 1 	if cellx == realsize: 		cellx = 0 	if cellx == -1: 		cellx = realsize - 1 	if celly == realsize: 		celly = 0 	if celly == -1: 		celly = realsize - 1 	cell(cellx, celly) 	return   def goodpoint(x, y): 	color = "#476042" 	x, y = x * pix, y * pix 	x1, y1 = (x - pix / 2), (y - pix / 2) 	x2, y2 = (x + pix / 2), (y + pix / 2) 	w.create_oval(x1, y1, x2, y2, outline=color, fill=color)   def badpoint(x, y): 	color = "#ff0000" 	x, y = x * pix, y * pix 	x1, y1 = (x - pix / 2), (y - pix / 2) 	x2, y2 = (x + pix / 2), (y + pix / 2) 	w.create_oval(x1, y1, x2, y2, outline=color, fill=color)   def cell(x, y): 	color = "#ffffff" 	x, y = x * pix, y * pix 	x1, y1 = (x - pix / 2), (y - pix / 2) 	x2, y2 = (x + pix / 2), (y + pix / 2) 	w.create_oval(x1, y1, x2, y2, outline=color, fill=color)   def canvas_print(): 	global canvas 	w.delete("all") 	ans = '' 	for y in range(realsize): 		for x in range(realsize): 			ans += str(canvas[x][y]) + " " 			if canvas[x][y] == 1: 				goodpoint(x, y) 			if canvas[x][y] == -1: 				badpoint(x, y) 			if canvas[x][y] == 0: 				cell(x, y) 		ans += " "   def usergoodpoint(event): 	x, y = int(event.x / pix), int(event.y / pix) 	canvas[x][y] = 1   def userbadpoint(event): 	x, y = int(event.x / pix), int(event.y / pix) 	canvas[x][y] = -1   master = Tk() master.title("Среда обучения") w = Canvas(master, bg="black", 		   width=canvas_size, 		   height=canvas_size) w.pack(expand=YES, fill=BOTH) w.bind("<B1-Motion>", usergoodpoint) w.bind("<B3-Motion>", userbadpoint)  iterat = -1 allg = 0 graphic = [] while True: 	iterat += 1 	if iterat % 200 == 0: 		plt.plot(graphic) 		plt.pause(0.0000001) 	good = 0 	if iterat % 10000 == 0: 		plt.close() 		mind.show()  	canvas[random.randint(0, realsize - 1)][random.randint(0, realsize - 1)] = 1 	canvas[random.randint(0, realsize - 1)][random.randint(0, realsize - 1)] = -1  	canvas_print()  	visn = cellvision(5) 	visnn = cellvision(-1)  	out = mind.out(visn) 	move_ = out[-1].index(max(out[-1])) 	mind.correct(visn, visnn, 0.1)  	answer = [0]*4 	answer[move_] = 1 	move(move_)  	if canvas[cellx][celly] == 1: 		good += 50 		canvas[cellx][celly] = 0.1  	elif canvas[cellx][celly] == -1: 		good -= 50 		canvas[cellx][celly] = 0.1  	# print(input()) 	allg += good 	graphic.append(allg)  	master.title("Среда обучения: " + " i:" + str(iterat) + " good:" + str(good)) 	master.update()  plt.show() master.mainloop() 

Первый запуск
Первый запуск
График обучения
График обучения
Веса до обучения
Веса до обучения
Веса после обучения ( 7, 11, 13, 17 - входные данные клеток вокруг нейросети)
Веса после обучения ( 7, 11, 13, 17 - входные данные клеток вокруг нейросети)

Гитхаб репозиторий: ссылка

Заключение

Нейронки это круто! Сохраняйте в закладки и поставьте апвоут, пожалуйста, это очень мотивирует.

Клиффхэнгер

Следующая часть про эволюционный алгоритм уже доступна!

спойлеры!
спойлеры!

Источник: habr.com

Комментарии: