Взаимодействие нейрон-глия в патогенезе эпилепсии |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-12-09 19:20 Со времен Гиппократа эпилепсия являлась устрашающей болезнью, которая также ассоциировалась с одержимостью. Однако с момента появления электроэнцефалографии (ЭЭГ) в 1929 году данное заболевание обрело патофизиологическое объяснение в виде появления гиперсинхронных импульсов очага нейронов в центральной нервной системе (ЦНС). Согласно современному международному стандарту, для того, чтобы поставить диагноз эпилепсии, требуется наличие как минимум 2 эпизодов неспровоцированных судорог с интервалом более 24 часов, или 1 эпизода вместе с вероятностью дальнейших припадков, рассчитываемой по риску рецидива после двух неспровоцированных припадков, происходящих в течение следующих 10 лет, или верифицированный диагноз эпилептического синдрома. Открытие фенобарбитала в 1912 году стало отправной точкой в лечении эпилепсии: препарат был эффективен у 2/3 больных. Однако оставшаяся треть оставалась резистентной к лечению, что дало повод исследовать патогенез эпилепсии: изучение гиперсинхронности и изменений в активности нейронов. Активность нейронов регулируется нейромедиаторами, их обменом, биохимией и связью с ионными каналами. Были попытки привязать эпилепсию к поломке определенного гена, однако в основном заболевание является полигенным. Были описаны различные биологические изменения в ЦНС, участвующие при эпилептогенезе: глиоз, избыточное воспаление, нарушение проницаемости гематоэнцефалического барьера (ГЭБ), нейродегенерация, аберрантный нейрогенез, аксональная и дендритная пластичность, изменения в нейрональной цепи, структурно-функциональные изменения рецепторов ионных каналов, реорганизация экстрацеллюлярного матрикса и др. Однако надо понимать, что ранее исследователи изучали в основном нейрональную активность и вклад нейронов в эпилептогенез. Далее мы более подробно обсудим некоторые из этих факторов, обсуждая вклад глии и ее влияния на нейроны в процессе патогенеза припадков. Глиоз Плотная фиброзная ткань глии, которая образуется в ответ на повреждение ЦНС, называется глиозным рубцом или глиозом. Данный рубец является одним из основных признаков хронической очаговой эпилепсии. При глиозе астроциты и микроглия приобретают патологический вид: гипертрофия клеток и их отростков, увеличение экспрессии белков (виментин, GFAP, CD68), увеличение клеточной пролиферации, а также формирование вязкого межклеточного вещества, богатого хондроитинсульфатом. Такая изменённая глия может влиять на окружающие ее клетки, выбрасывая в пространство цитокины, хемокины, ростовые факторы. До определённого момента такая реакция является адаптационной, однако в дальнейшем воспаление приводит к разрушению нервной ткани. Вопрос о том, является ли глиоз причиной судорог, остается спорным. Лучшим доказательством связи между глиозом и эпилепсией являются исследования, в которых глиоз был спровоцирован делецией гена интегрина ?1 в астроцитах. У животных, подвергшихся эксперименту, были отмечены спонтанные рецидивирующие припадки. Более того астроцит-специфическая делеция гена туберозного склероза Tsc1 вызывает дезорганизацию нервной ткани в виде астроглиоза, что также сопровождается припадками. При болезни Александера, одним из основных симптомов которой являются судороги, присутствует мутация гена GFAP в астроцитах. Данные примеры объясняются тем, что пораженные астроциты в недостаточном количестве вырабатывают глутаматные транспортеры, что ведет к эксайтотоксичности, гибели нейронов и припадкам. Однако есть исследования, не подтверждающие связи глиоза и эпилепсии. К примеру, в одном исследовании резецировали ткани пациентов с очаговой кортикальной дисплазией, где не было найдено глиоза в участках неповрежденной эпилептогенной коры. Во всяком случае, роль глиоза в патогенезе эпилепсии остается значимой. Ионный и водный гомеостаз Активность нейронов зависит от работы Na+ и К+ каналов. Так как межклеточное вещество (МКВ) в головном мозге очень мало по объему, данные каналы не допускают чрезмерного тока ионов и жидкости в него. Так, например, регуляция калия в МКВ регулируется Na/K-АТФазой, которая обеспечивает отток избыточного калия из МКВ в астроциты. Предполагают, что нарушения в работе калиевого буфера могут приводить к припадкам. Доказать это можно исследованиями, где потеря гена Kir 4.1, ответственного за экспрессию калиевых каналов, приводила к приобретенной эпилепсии у животных. Также стоит вспомнить хлор и его ингибирующее действие на рецепторы ГАМК типа А. За транспорт хлора ответственны 2 транспортера: Na/K/Cl и K/Cl. Потеря функции последнего тесно связана с возникновением эпилепсии у людей. Глутамат является одним из факторов влияния на экспрессию и функцию данного транспортера. Избыточное количество глутамата, выделяющегося во время припадка, активирует NMDA рецепторы, что приводит к дефосфорилированию и уменьшению экспрессии K/Cl насоса. При этом отток хлора из клетки уменьшается, что приводит к гипервозбудимости ГАМК рецептора. Тут стоить отметить, что астроциты играют важную роль в регуляции количества глутамата: при повреждении астроцитов повышенное количество глутамата и дизрегуляция ГАМК рецептора приведет к судорогам. Также активность нейронов связана с током жидкости, который обеспечен белками аквапоринами (АКП). АКП4 экспрессируется на поверхности отростков астроцитов, которые находятся непосредственно у кровеносных сосудов. Изменения в экспрессии данного гена наблюдались в исследованиях у животных, и людей. Также полагают, что АКП4 связан с обменом калия воздействуя на Kir 4.1. Нейромедиаторы Увеличенное количество внеклеточного глутамата является маркером эпилептически пораженной ткани и причиной судорог. Одна из важнейших функций астроцитов в ЦНС – удаление излишек глутамата из МКВ, что обеспечивается двумя Na-зависимыми транспортерами (ЕААТ1 и ЕААТ2). При попадании глутамата в клетку происходит его деградация при помощи дегидрогеназы в альфа-кетоглутарат, вступая затем в цикл Кребса и обеспечивая клетку энергией. Оставшаяся превалирующая часть глутамата при помощи глутамин-синтетазы превращается в глутамин. Далее глутамин выделяется в МКВ, где захватывается нейронами и вступает в глутамат-глутаминовый цикл. В возбужденных нейронах глутамат из данного цикла пакуется в везикулы для дальнейшего выброса, в то время как в ГАМК-ергических тормозных нейронах глутамат переводится в ГАМК. При глиозе астроцитов данная физиологическая цепочка становится патологической, что было продемонстрировано на мышиной модели вирус-индуцированного астроглиоза. В пораженных астроцитах уменьшилось количество глутамин-синтетазы, что уменьшало поставку глутамина для тормозных ГАМК-ергических нейронов, что привело к гипервозбудимости нейронов. В итоге возникали эпилептогенные очаги и припадки. Последние исследования действительно показывают, что роль глии в патогенезе эпилепсии важна. Однако остается еще множество вопросов, как именно происходит взаимодействие глии и нейронов, и что является первичным: возникновение эпилептогенного очага при разрушенной глии, или разрушенная глия вследствие эпилептогенных нейронов. Данный перевод является обзорным. Для получения более углубленной информации рекомендуется перейти к оригиналу: Источник: Patel, D. C., Tewari, B. P., Chaunsali, L., & Sontheimer, H. (2019). Neuron–glia interactions in the pathophysiology of epilepsy. Nature Reviews Neuroscience. doi:10.1038/s41583-019-0126-4 Автор перевода: Нарожных В.С. Источник: psyandneuro.ru Комментарии: |
|