Nvidia показала нейросеть, которая учит танцевать |
||
МЕНЮ Искусственный интеллект Поиск Регистрация на сайте Помощь проекту ТЕМЫ Новости ИИ Искусственный интеллект Разработка ИИГолосовой помощник Городские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Техническое зрение Чат-боты Авторизация |
2019-12-18 13:00 Исследователи Nvidia совместно с Калифорнийским университетом представили модель машинного обучения, которая поможет создать танцевальное видео. Нейросеть предлагает набор танцевальных движений, которые разнообразны, согласованы по стилю и соответствуют ритму музыки. «Это сложная, но интересная генеративная задача с потенциалом для создания контента в искусстве и спорте, например в сфере театральных представлений, художественной гимнастики и фигурного катания», — заявили авторы исследования. Модель сначала учится двигаться, а затем сочинять движения. Команда использовала MM-GAN (Generative Adversarial Network for Multi-Modal Distribution). Исследователи брали стиль и ритмы музыки и синтезировали последовательность танцевальных движений рекуррентным образом. Для обучения нейросети они использовали видео трех танцевальных категорий, включая балет, зумбу и хип-хоп. В итоге было синтезировано более 361 000 клипов или около 71 часа танцевального видео. Для обработки движений применили OpenPose, разработанную Университетом Карнеги-Меллона. Нейросеть превращает исходное видео движения в упрощенную модель человеческого тела, состоящую из ключевых точек, которые соединяются линиями. Затем движения исходника передаются на целевую модель. Работа проводилась с использованием PyTorch и графических процессоров NVIDIA V100. Теперь команда планирует добавить больше танцевальных стилей, таких как поп и партнерский танец. «Качественные и количественные оценки показывают, что синтезированные танцы по предлагаемому методу не только реалистичны и разнообразны, но также соответствуют стилю и ритму», — отметили исследователи. Автор: @maybe_elf Источник: m.vk.com Комментарии: |
|