Исследование показало: если просто повторить один и тот же запрос дважды, точность LLM заметно растёт |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2026-02-20 12:46 В тесте на поиск элемента в длинном списке результат одной модели вырос с 21% до 97%. Никакого файнтюнинга, дополнительных вычислений или хитрого промпт-инжиниринга не требуется, только дублирование первоначального промпта. Модели обрабатывают текст слева направо и ограничены причинным вниманием. Дублирование входа даёт токенам второй шанс «увидеть» полный контекст и улучшает связи внимания. Эффект подтверждён на 7 бенчмарках и 7 моделях (GPT-4o, Claude, Gemini, DeepSeek), особенно в задачах поиска, извлечения и работы с длинным контекстом. При этом время ответа и длина генерации почти не меняются. Рост качества вывода моделей всё чаще достигается не увеличением моделей, а управлением подачей контекста. Побеждают архитектуры и практики, которые компенсируют ограничения внимания на уровне системы. Статья https://arxiv.org/pdf/2512.14982 Источник: arxiv.org Комментарии: |
|