Андроид Unitree G1 научился кататься на скейтборде |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2026-02-10 11:03 Китайские инженеры научили человекоподобного робота Unitree G1 кататься на скейтборде с помощью разработанного ими алгоритма HUSKY. Они использовали модель физики скейтборда и обучение с подкреплением. Робот умеет отталкиваться одной ногой от земли, как настоящий скейтбордист, набирать скорость, плавно поворачивать, наклоняя корпус на нужный угол, и сохранять равновесие во время всех маневров. Препринт статьи опубликован на сайте arXiv.org, у проекта есть страница на GitHub. Научить робота кататься на скейтборде — задача куда сложнее, чем может показаться на первый взгляд. В отличие от привычной ходьбы по твердому полу, андроиду в данном случае приходится управлять подвижной динамически нестабильной платформой с колесами, которые не имеют собственных моторов. Хотя робособаки смогли усвоить этот трюк, для человекоподобных роботов с их высоким центром тяжести скейтбординг до последнего времени давался с трудом. Основная проблема заключается в том, что традиционные методы управления, вроде управления на основе прогнозирующих моделей, как правило, слишком упрощают задачу и предполагают статичную поверхность, тогда как скейтборд подвижен, и взаимодействие с ним требует тонкого учета физики. Команда исследователей под руководством Бая Чэньцзя (Chenjia Bai) из Института искусственного интеллекта представила систему управления под названием HUSKY (HUmanoid SKateboarding sYstem), которая решает эту проблему. В ее основе лежит подход, состоящий из трех компонентов: отталкивания, руления и процесса перехода, во время которого робот переносит ногу, которой отталкивается от земли, на доску. Для каждой фазы используются свои стратегии, объединенные в общую структуру обучения с подкреплением. Для фазы разгона, в которой робот стоит одной ногой на доске, а другой отталкивается от земли, разработчики использовали имитацию движений человека с помощью метода Adversarial Motion Priors, который позволяет роботу копировать движения настоящих скейтбордистов. Нейросеть оценивает, насколько движения робота похожи на реальные, что делает их более естественными и плавными, и помогает поддерживать баланс при прерывистом контакте одной ноги с землей. Фаза руления, в которой обе ноги находятся на доске, строится на физической модели скейтборда с системой поворота за счет кренов. Модель подсказывает роботу необходимый угол наклона для достижения нужного курса. Робот получает награду за соблюдение этого расчетного крена, что значительно ускоряет обучение и повышает точность маневрирования по сравнению с методами без явных физических подсказок. В фазе перехода HUSKY генерирует плавные кривые Безье для ключевых точек тела (ног, таза) от текущего положения к целевой позе следующей фазы. Это создает «коридор» движений, помогая роботу плавно перенести вес и точно поставить ногу в нужное место на деке скейтборда, избегая резких рывков и потери равновесия. Для обучения инженеры использовали алгоритм Proximal Policy Optimization с ассиметричной схемой актор-критик в симуляторе Isaac Gym. Агент получал информацию о состоянии робота и скейтборда и учился максимизировать вознаграждение, которое включало в себя точность следования заданной скорости и направлению, а также плавность движений. Чтобы перенести навыки из симуляции в реальность, авторы измерили физические параметры подвесок реальных скейтбордов и определили их реакцию на наклон и затухание колебаний. Полученные данные инженеры использовали для настройки симулятора, что позволило минимизировать разрыв между виртуальной и реальной физикой (sim-to-real gap). Кроме того, во время обучения применялась рандомизация таких параметров среды, как трение и масса, чтобы сделать поведение робота более устойчивым к внешним возмущениям. В испытаниях на реальном роботе Unitree G1 система HUSKY продемонстрировала хорошие результаты. Робот успешно разгонялся, запрыгивал на доску, выполнял повороты и тормозил, сохраняя равновесие даже при внешних толчках. Он смог кататься на скейтбордах с разной жесткостью подвески, адаптируясь к их особенностям. Сравнение с базовыми методами показало, что предложенный подход обеспечивает более высокую стабильность, точность управления и естественность движений. На данный момент робот использует ограниченное поле зрения встроенных камер, что не позволяет ему надежно отслеживать положение скейтборда и взаимодействие колес с поверхностью. Поэтому в будущем разработчики планируют внедрить улучшенную систему зрения, чтобы робот мог корректировать свои действия, основываясь на визуальной информации о доске и дороге, а не только на проприоцептивных датчиках. В 2024 году японские инженеры научили человекоподобного робота Musashi с мускульно-скелетной конструкцией управлять автомобилем. Он мог менять направление движения, разгоняться до заданной скорости и тормозить при появлении пешеходов и других машин. Источник: nplus1.ru Комментарии: |
|