Step3-VL-10B: VLM от stepfun.ai

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2026-01-31 11:53

ИИ проекты

Пока индустрия одержима гигантоманией и соревнуется, у кого больше параметров, Stepfun решили пойти против течения.

Встречайте, Step3-VL-10B (https://huggingface.co/collections/stepfun-ai/step3-vl-10b) - компактная VL-модель, которая по заявлениям разработчиков не просто конкурирует, а буквально уделывает модели в 10–20 раз тяжелее, включая таких титанов, как Gemini 2.5 Pro и GLM-4.6V.

Звучит как маркетинговый хайп, но под капотом есть интересные инженерные решения, хоть и с хитринкой.

Архитектура

Конструкция из кастомного визуального PE-lang энкодера на 1.8B параметров и Qwen3-8B (что уже половина успеха, учитывая мощь Qwen) в качестве декодера.

В отличие от многих, кто замораживает визуальную часть, Stepfun разморозили все и тренировали модель в один прогон на 1,2 трлн. токенов. Это позволило визуальной и языковой частям модели не просто сосуществовать, а реально срастись и притереться друг к другу.

После этого модель прогнали через адский RL-цикл (RLVR+RLHF) на 1400+ итераций, чтобы модель научилась жестко ризонить.

Тесты

В бенчмарках цифры действительно страшные (в хорошем смысле) для такого размера:

MMMU: 78.11 (SeRe) / 80.11 (PaCoRe).

MathVista: 83.97

AIME 2025: 87.66 (SeRe) / 94.43 (PaCoRe)

OCRBench: 86.75 (отлично читает документы).

Для сравнения: GLM-4.6V на 106B выдает на MMMU только 75.20.

Инженерная хитринка кроется в методологии тестирования. Видите в результатах тестов пометку PaCoRe?

PaCoRe (Parallel Coordinated Reasoning):

Чтобы получить топовые цифры, модель использует test-time compute. Она запускает 16 параллельных роллаутов, собирает доказательства из разных веток и синтезирует ответ.

На инференсе это будет стоить вам в 16 раз "дороже" по ресурсам, чем обычный прогон. В стандартном режиме (SeRe) модель все еще хороша, но уже не выглядит как "убийца всех топов".

Кстати, Stepfun честно признались, что в отчетах накосячили с бенчмарками конкурента Qwen3VL-8B из-за неверного `max_tokens`. Извинились, обещают пересчитать. Это добавляет доверия, но напоминает, что бенчмарки - дело тонкое.

В общем, модель - отличный кандидат для локального использования: есть OpenAI-compatible API и vLLM поддерживается (PR вмержили).

Если модель зацикливается при генерации - обновите конфиг, там был баг с `eos_token_id`, который уже пофиксили.

Лицензирование:  Apache 2.0 License.

Модель (https://huggingface.co/collections/stepfun-ai/step3-vl-10b)

Arxiv (https://arxiv.org/pdf/2601.09668)

Demo (https://huggingface.co/spaces/stepfun-ai/Step3-VL-10B)


Источник: huggingface.co

Комментарии: