OpenAI рассказала: как обслуживает 800 миллионов пользователей ChatGPT на обычном PostgreSQL — больше миллиона запросов в секунду, без кастомных модификаций

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Архитектура: 1 primary инстанс + ~50 read реплик на Azure-инфраструктуре. Latency на p99 — двузначные миллисекунды. Правда, есть нюанс — write-heavy workloads OpenAI вывела в Azure CosmosDB, а в PostgreSQL оставила read-heavy операции.

Что интересно — они не стали городить сложную систему. Вместо этого взяли стандартный PostgreSQL и выжали из него максимум через базовые практики: connection pooling (PgBouncer) для переиспользования соединений вместо создания новых, query optimization для профилирования и переписывания тяжёлых запросов, strategic indexing — индексы ровно там, где нужны.

Для AI-функций используют расширение pgvector — хранят и ищут высокоразмерные векторы (embeddings) для семантического поиска в данных ChatGPT.

База обслуживает данные пользователей, истории разговоров и API-взаимодействия.

Главный вывод: PostgreSQL действительно масштабируется до экстремальных нагрузок, если правильно настроить. Не нужно сразу бежать за NewSQL или распределёнными системами — сначала стоит выжать всё из проверенных решений.

Инженеры OpenAI подчёркивают: успех в том, что они фокусировались на best practices, а не на переизобретении колеса. Connection pool, индексы, read реплики — это всё есть в документации PostgreSQL. Просто нужно применить грамотно.

Годный пример того, что правильное разделение нагрузки важнее выбора модной БД. PostgreSQL для чтения + CosmosDB для записи — и никакого шардинга одной базы. Простая архитектура побеждает.


Источник: news.ycombinator.com

Комментарии: