Андрей Карпаты нашел идеальный баланс токенов и параметров для обучения LLM |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2026-01-11 12:16 Андрей Карпаты опубликовал (https://x.com/karpathy/status/2009037707918626874) результаты экспериментов по оптимизации претрейна языковых моделей в условиях фиксированного бюджета. Чтобы найти наиболее эффективный способ расходования вычислительных ресурсов, он провел серию тестов на сервере с 8х GPU H100, обучив 11 моделей разного размера при одинаковых затратах на вычисления. Главный вывод: существует «золотое сечение». Карпаты обнаружил, что по мере увеличения мощностей оптимальное количество параметров и тренировочных токенов растут синхронно. Эмпирическое правило для протестированных конфигураций: на 1 параметр модели должно приходиться примерно 8 токенов обучающей выборки. Если модель слишком мала, она не усваивает достаточно информации; если слишком велика — бюджет заканчивается раньше, чем она успевает обучиться. Для инженеров этот рецепт позволяет заранее планировать архитектуру и бюджет, избегая создания заведомо неэффективных моделей. Традиционно, все эксперименты Андрея открыты и их можно повторить самостоятельно. Погрузиться в детали экспериментов (https://github.com/karpathy/nanochat/discussions/420) Источник: github.com Комментарии: |
|