Shannon - автономный AI-хакер для поиска реальных уязвимостей |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-12-18 16:02 Shannon - это полностью автономный AI-агент, который ищет настоящие эксплойты в веб-приложениях, а не просто флаги или теоретические проблемы. Он работает без подсказок, анализирует исходный код и ведёт себя как реальный атакующий. Главное достижение - 96.15 процента успешных атак на XBOW Benchmark в режиме hint-free и source-aware. Это один из самых сложных бенчмарков для offensive security, где агенту нужно самостоятельно находить цепочки уязвимостей. Как это работает: - анализ исходного кода и поведения приложения - построение гипотез атак - автоматическая проверка эксплойтов - подтверждение реального взлома, а не ложных срабатываний Shannon показывает, куда движется AppSec. Мы переходим от сканеров и правил к автономным AI-агентам, которые думают и атакуют как человек, но делают это быстрее и масштабнее. Для команд безопасности это означает одно - защищаться скоро придётся не от скриптов, а от полноценных AI-атакеров. github.com/KeygraphHQ/shannon Источник: vk.com Комментарии: |
|