Развитие взглядов на возможность моделирования человеческого мышления: от Платона до наших дней |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-12-16 10:54 С тех пор как древние греки изобрели логику и геометрию, мысль о том, что всякое рассуждение может быть сведено к своего рода вычислению — так что любые дискуссии можно было бы считать улаженными раз и навсегда,— занимала умы большинства представителей точного знания на Западе. Первым, кто высказал эту мысль, был Сократ. Рассказ об «?искусственном интеллекте» можно было бы начать с 450 г. до н.э., когда (как повествует Платон) Сократ обратился с вопросом к афинскому гражданину Эвтифрону, который собирался в порыве благочестия выдать властям своего отца, совершившего убийство: «?Открой же мне теперь... то, что для тебя, по твоему признанию, совершенно ясно, то есть как надобно отличать благочестие от нечестия... что такое сама эта идея, чтобы, смотря на нее и пользуясь ею, как образцом, я мог бы согласное с нею — и в твоих поступках, и в поступках других людей — назвать святым, а несогласное — несвятым». Сократ просит Эвтифрона открыть ему то, что специалисты по математическому обеспечению вычислительных машин назвали бы «?эффективной процедурой», набором «?сообщаемых нам время от времени правил, которые точно регламентируют наше поведение». Платон придал этой потребности в моральной уверенности эпистемологический характер. Согласно Платону, всякое знание должно быть представлено в виде точных определений, которыми может пользоваться всякий. Если человек не может представить свое умение в виде такого рода точных правил, то есть если он не в состоянии обратить свои знания о том, как нечто делается, в знание о том, что делать, значит, он располагает не знанием, а верой, уверенностью. Согласно Платону, повара, например, руководствующиеся в своем деле вкусом и интуицией, и поэты, работа которых зависит от вдохновения, вообще не обладают знанием: то, что они делают, не связано с пониманием и не может быть понято. Таким образом, все, что не может быть сформулировано в виде четких правил — все сферы человеческой мысли, требующие мастерства, интуиции или чувства традиции,— следует расценивать как своего рода бессмысленную одержимость. Однако Платона еще нельзя считать кибернетиком в полном смысле слова (хотя, согласно Н. Винеру, он был первым, кто употребил этот термин), поскольку его интересовали главным образом семантические, а не синтаксические критерии. Платон исходил из предположения, что человек понимает значение понятий, составляющих правила. В «?Государстве» Платон говорит, что понимание как таковое (то есть подразделяющаяся на части и подчиняющаяся правилам линия познания) зависит от разума, который предполагает диалектический анализ и в конечном счете интуитивные представления о значении основных понятий, используемых в процессе понимания. Таким образом, Платон признает, что его правила не могут быть полностью формализованы. Точно так же современный специалист по вычислительным машинам М. Минский, пытаясь реконструировать представления Платона об эффективной процедуре, замечает: «?Эта попытка дать определение вызывает критику, потому что интерпретация предусмотренных правил не должна зависеть от некоторого субъекта или посредника». Аристотель, расходившийся с Платоном в этом вопросе, как и во многих других, касающихся приложения теории к практике, с удовлетворением отмечает, что для применения платоновских правил необходимо обращение к интуиции. По его мнению, совсем не просто найти формулу, с помощью которой можно было бы определить, как далеко может зайти человек и до какой степени он может заблуждаться, прежде чем в наших глазах он станет виновным. Точно так же трудно дать определение и в случае любого объекта восприятия; такого рода вопросы о степени виновности неразрывно связаны с обстоятельствами, сопутствующими рассматриваемому конкретному случаю, где единственным нашим критерием служит восприятие. ![]() Для того чтобы осуществить идею Платона, требуется только одно: исключить какое бы то ни было обращение к интуиции и оценкам, носящим характер мнений. Подобно тому как Г. Галилей пришел к своему открытию чисто формального описания движения физических тел, исключив из рассмотрения все второстепенные факторы и телеологические соображения, новый Галилей в науке о человеческом поведении мог бы добиться успеха, сведя все семантические соображения (обращение к значениям) к методам синтаксических (формальных) преобразований. Убеждение в возможности такого рода тотальной формализации познания вскоре стало доминирующим в западной мысли. Теперь оно уже выражало основной моральный и интеллектуальный императив, а успехи физических наук подтверждали (как это казалось философам XVI в., а сегодня — таким мыслителям, как Минский) возможность реализации этого императива. Впервые синтаксическая концепция мышления как процесса вычисления была в явной форме сформулирована Т. Гоббсом: «?Когда человек рассуждает, он лишь образует в уме итоговую сумму путем сложения частей... ибо рассуждение... есть не что иное, как подсчитывание». Оставалось только установить первичные элементы — словесные «?кванты», которыми мог бы оперировать этот чисто синтаксический «?калькулятор». Лейбниц — изобретатель двоичной системы счисления — посвятил свою жизнь разработке необходимого для этого однозначного формального языка. Он полагал, что ему удалось найти универсальную и точную систему обозначений, некоторую алгебру, символический язык, «?универсальную характеристику», с помощью которой каждому объекту можно приписать определяющее его «?характеристическое число». Используя этот прием, всякое понятие можно представить в виде небольшого количества исходных и неопределяемых идей; все знание же может получить выражение и быть объединено в единой дедуктивной системе. На основе этих характеристических чисел-характеристик и правил их комбинирования может быть разрешен любой спор и решена любая проблема. «И если кто-нибудь усомнился бы в том, что я выдвигаю, я ответил бы ему: "Давайте вычислим, сударь!" — и мы, взяв перо и чернила, быстро вышли бы из затруднительного положения». [...] Обладая этим новым мощным инструментом, искусство, способы формализации которого безуспешно искал Платон, можно поднять до уровня теории. [...] Если Лейбниц только обещает, то Дж. Буль — математик и логик XIX в.— предпринимает шаги для реализации этой программы. Подобно Гоббсу, Буль считает, что рассуждение есть вычисление; его цель — «?исследовать основные законы тех операций разума, посредством которых осуществляется рассуждение, выразить их на символическом языке некоторого исчисления». Булева алгебра — это бинарная алгебра для представления элементарных логических функций. Если а и b — переменные, точка представляет союз «?и», знак плюс — союз «?или», а 1 и 0 представляют соответственно «?истину» и «?ложь», то правила логических переходов могут быть представлены в следующем алгебраическом виде: a + а = а, a + 0 = а, а + 1 = 1, а ? а = а, a ? 0 = 0, а ? 1 = а. Теперь западный человек был готов к началу вычисления. Почти немедленно — с появлением изобретений Ч. Бэббеджа (1835) — практика стала догонять теорию. Бэббедж задумал проект «?аналитической машины», как он ее назвал, которая — хотя она так и не была построена — должна была функционировать в точности так же, как и современная цифровая вычислительная машина: в ней использовались перфокарты, сочетание арифметических и логических операций, а логические решения, принимавшиеся в ходе вычислительного процесса, находились в зависимости от результатов предшествующих вычислений. Существенная особенность машины Бэббеджа заключалась в том, что она была цифровой. Существует два основных типа вычислительных машин: аналоговые и цифровые. Аналоговые машины не вычисляют в строгом смысле слова — их функционирование заключается в измерении физических величин. Используя такие физические величины, как электрическое напряжение, длительность, угол поворота диска и т.д., пропорциональные исследуемой величине, они физически комбинируют упомянутые величины и измеряют получающийся результат. Типичный пример аналоговой вычислительной машины — логарифмическая линейка. В цифровой вычислительной машине, как это следует из используемого в ее названии слова «?цифровая» — по-английски digit, что по-латыни означает «?палец», — все величины представлены дискретными состояниями, например состояниями реле («включено — выключено») телефонного диска, занимающего любую из десяти позиций, и т.д. Такая машина для получения результата считает в буквальном смысле слова. Таким образом, в то время как аналоговые вычислительные машины оперируют непрерывными величинами, все цифровые вычислительные машины являются машинами с дискретными состояниями, или машинами дискретного действия. [...] Идеи Бэббеджа опередили технологию его времени, ибо в то время еще не существовало быстрого и эффективного способа представления цифр и манипулирования с ними. Для реализации дискретных состояний Бэббеджу пришлось использовать неуклюжие механические средства, такие, например, как зубчатое колесо. Необходимым технологическим решением оказались электрические переключательные схемы. Когда в 1944 г. Х. Айкен построил первую работающую цифровую вычислительную машину, она представляла собой электромеханическое устройство, в которое входило около 3000 телефонных реле. Однако подобные машины работали еще медленно; и лишь следующее поколение вычислительных машин, в котором использовались электронные лампы, знаменовало собой появление современной ЭВМ, пригодной для любых вычислений. [...] Однако эти машины так и остались бы просто арифмометрами-«переростками», если бы в них не нашли свое воплощение идеи Платона, рафинированные двумя тысячелетиями развития метафизики. Наконец появилась машина, оперирующая «?квантами» данных по синтаксическим правилам. Более того, эти правила встроены в схемы самой машины. После того как в машину закладывается программа, отпадает всякая необходимость в интерпретации: никакого обращения к человеческой интуиции, никаких суждений, основанных на мнениях. Именно к этому стремились Т. Гоббс и Г. Лейбниц; недаром М. Хайдеггер справедливо назвал кибернетику кульминацией философской традиции. ![]() Таким образом, пока практичные люди вроде Дж. Эккерта и Дж. Мошли проектировали в Пенсильванском университете первую электронную цифровую вычислительную машину, теоретики, такие, как А. Тьюринг, пытаясь понять, какова сущность и возможности машин такого типа, оказались вовлеченными в круг вопросов, который до той поры находился в ведении философов: какова природа рассуждения как такового? В 1950 г. Тьюринг написал программную статью «?Вычислительные машины и интеллект», в которой подчеркнул, что «наш интерес к "мыслящим машинам" возник благодаря машине особого рода, обычно называемой "электронной вычислительной машиной" или "цифровой вычислительной машиной"». Затем он поставил вопрос: «?Могут ли (такие.— Х.Д.) машины мыслить?» Для получения ответа на него Тьюринг предложил тест, который назвал игрой в имитацию. Мы читаем: «Эта новая форма проблемы может быть описана с помощью игры, которую мы назовем "игрой в имитацию". В этой игре участвуют три человека: мужчина (А), женщина (В) и кто-нибудь задающий вопросы (С), которым может быть лицо любого пола. Задающий вопросы отделен от двух других участников игры стенами комнаты, в которой он находится. Цель игры для задающего вопросы состоит в том, чтобы определить, кто из двух других участников игры является мужчиной (A), а кто — женщиной (В). Он знает их под обозначениями X и У и в конце игры говорит либо: "X есть А и У есть В", либо: "X есть В, и У есть А". Ему разрешается задавать вопросы такого, например, рода: С: "Попрошу X сообщить мне длину его (или ее) волос". Допустим теперь, что в действительности X есть А. В таком случае А и должен давать ответ. Для А цель игры состоит в том, чтобы побудить С прийти к неверному заключению. Поэтому его ответ может быть, например, таким: "Мои волосы коротко острижены, а самые длинные пряди имеют около девяти дюймов в длину". Чтобы задающий вопросы не мог определить по голосу, кто из двух других участников игры мужчина, а кто — женщина, ответы на вопросы следовало бы давать в письменном виде или, еще лучше, печатать на машинке. Идеальным случаем было бы телеграфное сообщение между комнатами, где находятся участники игры. Если же этого сделать нельзя, то ответы и вопросы может передавать какой-нибудь посредник. Цель игры для третьего игрока — женщины (В) — состоит в том, чтобы помочь задающему вопросы. Для нее, вероятно, лучшая стратегия — давать правдивые ответы. Она также может делать такие замечания, как: "Женщина — я, не слушайте его!" — но этим она ничего не достигнет, так как мужчина тоже может делать подобные замечания. Поставим теперь вопрос: "Что произойдет, если в этой игре вместо А будет участвовать машина?" Будет ли в этом случае задающий вопросы ошибаться столь же часто, как и в игре, где участниками являются только люди? Эти вопросы и заменят наш первоначальный вопрос: "Могут ли машины мыслить?"» Этот тест получил известность как тест Тьюринга. Вероятно, философу простое сходство в поведении машины и поведении человека покажется недостаточным основанием для признания за машиной свойства разумности, но в качестве цели работы для тех, кто действительно пытается построить думающую машину, а также в качестве критерия, которым можно было бы пользоваться при критической оценке этих попыток, тест Тьюринга подходил как нельзя лучше. Конечно, ни одна из существовавших тогда машин не могла быть немедленно использована в качестве партнера в игре Тьюринга. Цифровые вычислительные машины, несмотря на их быстродействие, точность и универсальность, все еще оставались ничем иным, как устройствами для переработки символов произвольного вида. Дело, однако, явно склонялось в пользу лейбницевской позиции. Пришло время для создания соответствующего символизма и детальных предписаний, с помощью которых правила ведения рассуждений можно было бы включить в программу для вычислительной машины. Осознав эту задачу, Тьюринг и предложил критерий проверки эффективности такой программы. Однако его статья заканчивается лишь очень общими соображениями по поводу имеющихся перспектив: «Мы можем надеяться, что машины в конце концов будут успешно соперничать с людьми во всех чисто интеллектуальных областях. Но какие из этих областей наиболее пригодны для того, чтобы начать именно с них? Решение даже этого вопроса наталкивается на затруднения. Многие считают, что начать лучше всего с какой-нибудь очень абстрактной деятельности, например с игры в шахматы. Другие предлагают снабдить машину хорошими органами чувств, а затем научить ее понимать и говорить по-англий- ски. В этом случае машину можно будет обучать, как ребенка: указывать на предметы и называть их и т.д. В чем состоит правильный ответ на этот вопрос, я не знаю, но думаю, что следует испытать оба подхода». [...] Однако ни тот, ни другой подход не привели ни к чему, хотя бы отдаленно напоминающему общую теорию разумного поведения. Отсутствовали правила, в соответствии с которыми любой вид интеллектуальной деятельности можно было бы представить в виде набора инструкций (команд, указаний). В это время Г. Саймон и А. Ньюэлл, анализируя процесс решения студентами логических задач, обратили внимание на то, что их испытуемые зачастую пользуются такими правилами или «?прямолинейными» приемами, которые, не будучи универсально применимыми, во многих случаях приводят к успеху, хотя случается и так, что они не позволяют решить задачу. Примером такого чисто эмпирического приема может служить следующее правило: всегда старайся заменить длинное выражение более коротким. А. Ньюэлл и Г. Саймон решили попытаться разработать модель такого практического интеллекта. Получающиеся при этом программы были названы «?эвристическими» — этим подчеркивалось их отличие от так называемых алгоритмических программ, которые хотя и гарантируют решение соответствующих задач (используя метод исчерпывающего поиска), однако слишком громоздки для практической реализации. Понятие практически применимого правила дало возможность расширить поле деятельности исследователей, занятых поисками путей программирования на вычислительных машинах таких форм поведения, которые имеют место при решении задач общего характера. [...] Однако вскоре А. Ньюэлл и Г. Саймон осознали, что и этот подход не может считаться достаточно общим. В следующем, 1957 году они поставили перед собой задачу выделить используемые в «?Логике-теоретике» эвристики и применить их к другим задачам того же рода. В результате возникла программа, получившая название «?Общий решатель задач» — по-английски General Problem Solving (сокращенное название — GPS). [...] Когда выяснилось, что цифровые машины могут решать задачи такого, например, рода, как задача о людоедах и миссионерах (каким образом переправить через реку трех людоедов и трех миссионеров, и при этом так, чтобы ни один миссионер не был съеден?), возникло ощущение, что наконец-то мечта философов нашла необходимые для своей реализации технические средства и что в универсальную быстродействующую ЭВМ удалось ввести правила, превращающие рассуждение в вычисление. [...] Эта область исследований, в которой цифровые вычислительные машины используются для моделирования разумного поведения, вскоре получила название «?искусственного интеллекта». Не следует, однако, думать, что она действительно соответствует этому названию. Вне всякого сомнения, искусственная нервная система, в достаточной степени близкая к человеческой, которая связана с органами чувств и реализована в некотором теле, конечно, будет обладать разумом. Однако термин «?искусственный» не означает, что исследователи искусственного интеллекта пытаются построить искусственного человека. На современном уровне развития физики, химии и нейрофизиологии это недостижимо. Саймон и другие пионеры «?искусственного интеллекта» предлагают создать нечто более ограниченное: эвристическую программу, дающую возможность цифровой машине, перерабатывающей информацию, проявлять разумность. Термин «?интеллект» тоже может привести к недоразумениям. Проектируя робота, никто не ожидает от него, что он будет воспроизводить любое поведение, которое считается разумным для человека. Роботу не придется, например, выбирать себе хорошую жену или переходить улицу на оживленном перекрестке. Он должен конкурировать с человеком только в более объективных и отвлеченных сферах человеческого поведения — с тем чтобы быть в состоянии одержать верх в игре Тьюринга. Но именно эта ограниченность цели, поставленной исследователями, работающими в области «?искусственного интеллекта», придает такое большое значение их работе. Эти «?последние метафизики» делают ставку только на способность человека к формализации своего поведения; в случае выигрыша они смогут, пренебрегая мозгом и телом, постичь самую суть рационального. Источник: livrezon.com Комментарии: |
|