ИИ научили диагностировать туберкулез на рентгеновских снимках |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-12-02 11:49 Ученые Междисциплинарной научно-образовательной школы «Мозг, когнитивные системы, искусственный интеллект» МГУ разработали метод увеличения данных для обучения нейросетей, позволяющий повысить точность диагностики туберкулёза по рентгеновским снимкам. Результаты опубликованы в сборнике ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: https://vk.cc/cRStDF. Туберкулёз остаётся одной из главных инфекций в мире, ежегодно унося более миллиона жизней. Несмотря на успехи медицины, ранняя диагностика по-прежнему затруднена, особенно в регионах, где не хватает квалифицированных рентгенологов. Современные алгоритмы машинного обучения могут помогать врачам в распознавании болезни по снимкам грудной клетки, однако их качество сильно зависит от объёма и качества данных для обучения. Коллектив студентов и сотрудников МГУ предложил использовать алгоритм Fast and Adaptive Bidimensional Empirical Mode Decomposition (FABEMD) для «увеличения данных» — создания новых вариантов рентгеновских изображений путём адаптивного удаления фоновых структур. Этот метод позволяет получить дополнительные снимки, сохраняющие диагностически важные особенности, но разнообразные по структуре, что повышает устойчивость и точность работы нейросетей. Тестирование проводилось на нескольких открытых международных наборах данных, включающих тысячи рентгеновских снимков. Эксперименты показали, что добавление таких синтетических изображений в обучающие выборки повышает диагностическую точность моделей, особенно на сложных наборах с ограниченным числом данных. Разработанный подход может применяться и в других медицинских задачах анализа изображений, где есть нехватка данных и требуется высокая точность — от диагностики лёгочных заболеваний до офтальмологии и онкологии. Источник: isprs-archives.copernicus.org Комментарии: |
|