CUDA-L2: ИИ научился писать CUDA-ядра эффективнее инженеров NVIDIA |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-12-06 12:12 Исследовательская группа DeepReinforce разработала систему полностью автоматического написания GPU-кода для матричного умножения под названием CUDA-L2 (https://arxiv.org/pdf/2512.02551). Этот код работает на 10–30% быстрее, чем cuBLAS и cuBLASLt, а это, на минуточку, уже оптимизированные библиотеки от самой NVIDIA. Обычно такие библиотеки создаются вручную людьми, которые используют готовые шаблоны ядер. А автотюнеры лишь подкручивают параметры, например, размер тайлов. Но DeepReinforce считают, что даже критически важные и глубоко оптимизированные задачи, как HGEMM, могут быть улучшены с помощью LLM, работающей в связке с RL. В системе CUDA-L2 языковая модель буквально пишет исходный код CUDA с нуля для каждого размера матрицы. Она не просто меняет параметры, она может менять структуру кода, циклы, стратегию тайлинга, паддинг и даже свизл-паттерны. А еще, она сама выбирает стиль программирования - будь то сырой CUDA, CuTe, CUTLASS или inline PTX. Процесс выглядит так: цикл RL запускает сгенерированные ядра на реальном железе, измеряет скорость и корректность, а затем обновляет LLM. Со временем модель выводит свои собственные правила производительности, вместо того чтобы полагаться на знания, заложенные людьми. В качестве генератора использовалась модель DeepSeek 671B. Ее дополнительно доучили на смеси массива CUDA-ядер и качественном коде из библиотек PyTorch, ATen, CUTLASS и примеров от NVIDIA. Что это дает на практике Для претрейна и файнтюна LLM большая часть времени GPU тратится именно на операции матричного умножения HGEMM. Если ускорить эти ядра на те самые 10–30%, которые обещает CUDA-L2, то весь процесс обучения становится заметно дешевле и быстрее. Поскольку CUDA-L2 обрабатывает около 1000 реальных размеров матриц, а не пару вручную настроенных, ускорение работает для самых разных архитектур. Это значит, что в тот же бюджет на GPU можно вместить больше токенов обучения, больше прогонов SFT или RLHF и т.д. Тесты HGEMM-ядра, созданные CUDA-L2, стабильно быстрее стандартных библиотек. В так называемом "оффлайн-сценарии" CUDA-L2 работает примерно на 17–22% быстрее, чем `torch.matmul`, cuBLAS и cuBLASLt. Она даже на 11% обгоняет cuBLASLt AutoTuning, который сам по себе уже использует поиск ядра. А в "серверном", сценарии, который имитирует реальный инференс с паузами между вызовами - разница еще больше: буст в 24–29% по сравнению с `torch.matmul` и cuBLAS. Простым рисёрчем проект не ограничен, в репозитории на Github (https://github.com/deepreinforce-ai/CUDA-L2) авторы выложили оптимизированные ядра HGEMM A100 для 1000 конфигураций. В планах: расширение на архитектуры Ada Lovelace, Hopper, Blackwell, поддержка более плотных конфигураций и 32-битный HGEMM. Arxiv (https://arxiv.org/pdf/2512.02551) GitHub (https://github.com/deepreinforce-ai/CUDA-L2) Источник: github.com Комментарии: |
|