Синтетические леса для выращивания мозга |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-11-29 11:19 Есть разные способы понять, что именно происходит в нашем мозге. Можно наблюдать за мозгом через сканы МРТ или посредством вскрытия. Можно выращивать органоиды – небольшие пласты нейронов, которые коммуницируют друг с другом. И даже использовать эти органоиды как процессор на биореакторе. Можно еще имитировать процессы мозга, используя вычислительные мощности и создавая 3D модели… Но можно ли вырастить мозг в лаборатории? Да, можно. Если использовать адекватные строительные леса. ![]() Искусственный мозг. Имитация и координация Создание нейронных тканей направлено ??на имитацию сложной среды мозга. В её входят не только сами нейроны, но и внеклеточный матрикс, который поддерживает рост, развитие и правильное взаимодействие нервных клеток. Эта среда тщательно структурирована и способна передавать сигналы, синхронизируя поведение и взаимодействие клеток. Ценность трёхмерны моделей, созданных методом тканевой инженерии, в огромном потенциале имитации сложной структуры и функций мозга. Однако пока ещё сложно воспроизвести тонкие особенности строения мозга в лабораторных условиях. Суть в том, что наши инструменты все еще слишком грубы, чтобы задавать мельчайшие детали, влияющие на поведение клеток. Учёные из Калифорнийского университета в Риверсайде впервые разработали функциональную искусственную ткань, которая упорядочивает и поддерживает нейроны, как это происходит в мозге. Это дает возможность обходиться без использования материалов животного происхождения. Их инновационная разработка, получившая название Bijel-Integrated PORous Engineered System (BIPORES) – это новая полностью синтетическая платформа для инженерии нейронных тканей. Цель и потенциал каркаса для взращивания искусственных нейронов Первоочередная цель исследования – отойти от необходимости использования мозга животных в исследованиях и экспериментах. Это сходится с текущей инициативой Управления по санитарному надзору за качеством пищевых продуктов и медикаментов США (FDA) по поэтапному отказу от испытаний на животных при разработке лекарственных препаратов. В основе синтетического мозга лежит полиэтиленгликоль (ПЭГ), химически нейтральный полимер. Сам по себе ПЭГ очень плохо вступает во взаимодействие с клетками. Они буквально соскальзывают с ПЭГ-структур. И обычно используются вспомогательные белки, такие как ламинин или фибрин, которые и предотвращают отслоение клеток. Ранее учёные разработали технологию STrIPS для непрерывного производства мельчайших частиц, волокон и плёнок с губчатой ??внутренней структурой. Однако до сих пор минимальная толщина таких материалов могла достигать лишь около 200 микрометров. И эта толщина ограничивается особенностями движения молекул в процессе формирования материала. Искусственный мозг и технология BIPORES Чтобы преодолеть проблему с толщиной каркаса, исследователи разработали систему BIPORES. Технология позволяет создавать крупномасштабные волокнистые структуры со сложной структурой пор. Разработчики вдохновлялись биконтинуальными межфазными эмульсионными гелями (биджелами). Это мягкие материалы с гладкой седловидной внутренней поверхностью. Сами же волокна BIPORES изготовлены из гелеобразного раствора ПЭГ, который преобразуется в пористую сеть и стабилизируется с помощью наночастиц диоксида кремния. Это особенно интересно на фоне того, что у нас уже есть как гибридные нейроны так и искусственные нейроны. И те, и другие теперь можно будет интегрировать с этой технологией возведения структур! Но обо всём по порядку. Используя специальную микрофлюидную установку и биопринтер, команда создала трёхмерные структуры, в которые слоями вплетены взаимосвязанные поры. Это позволяет питательным веществам и отходам свободно перемещаться, что и способствует росту клеток не толкьо «на поверхности» но и «вглубь». Испытания на стволовых клетках нейронов показали, что материал способствует прочному прикреплению клеток к каркасу, их росту и даже формированию активных нейронных связей.
Каркас для мозга Для создания каркаса команда использовала специальную жидкую смесь из ПЭГ, этанола и воды. ПЭГ плохо смешивается с водой, поэтому ведёт себя как масло, а этанол способствует равномерному перемешиванию компонентов. Полученную смесь пропускали через сверхтонкие стеклянные трубки. Направленный поток приводит к тому, что ингредиенты специфически разделяются. В этот момент стоит подать питание, чтобы кристаллизовать смесь. Так и получается губчатая структура, полная мельчайших пор. Эти поры позволяют кислороду и питательным веществам свободно перемещаться в растущем органоиде, способствуя питанию находящихся внутри стволовых клеток.
На данный момент диаметр каркаса можно нарастить всего на два миллиметра, но команда работает над его масштабированием и даже представила новую статью, в которой исследуется, как тот же подход можно применить к тканям уже не мозга, а печени. Собирая тело по кусочкам? Актуальная цель – создать сеть выращенных в лаборатории мини-органов, которые взаимодействуют друг с другом, подобно реальным системам в организме человека. Исследователи стремятся создать модели, которые будут не только стабильными и долговечными, но и столь же функциональными, как и прорыв в области мозговой ткани.
С точки зрения биомимикрии, этот подход послойного производства гораздо лучше имитирует поведение настоящей мозговой ткани. Это делает его мощным инструментом для изучения заболеваний, тестирования новых лекарств и даже разработки будущих методов лечения, направленных на восстановление или замену повреждённой нервной ткани. Традиционно, больше материалов про мозг, психику, науку и тонкую грань между актуальной наукой и фантастикой – вы найдете в сообществе Neural Hack. Подписывайтесь, чтобы не пропускать свежие статьи! Источник: habr.com Комментарии: |
|