Клетки стали курьерами технологий: микрочипы путешествуют по телу, как цифровые врачи |
||||||||||||||||||||||||||||||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-11-09 11:06 Учёные Массачусетского технологического института (MIT) представили революционную разработку — микроскопические биоэлектронные имплантаты, способные передвигаться по кровеносной системе и самостоятельно добираться до нужных участков мозга. После установки эти устройства питаются от беспроводной сети и стимулируют нейроны, открывая перспективы для лечения таких заболеваний, как болезнь Альцгеймера, рак мозга, рассеянный склероз и другие неврологические расстройства. Исследование опубликовано в журнале Nature Biotechnology и уже вызвало интерес среди специалистов в области нейроинженерии. Технология сочетает принципы микроэлектроники и клеточной биологии, позволяя создавать "умные" системы, которые действуют с микрометровой точностью, не повреждая ткани.
Как устроены и работают имплантаты Микроскопические устройства размером с миллиардную часть длины рисового зерна состоят из многослойной структуры полупроводников и металлов, создающих сложную электронную гетероструктуру. Их изготавливают с применением КМОП-совместимых технологий в MIT. nano, после чего чипы объединяются с живыми клетками, чаще всего с иммунными моноцитами. Эти клетки служат своеобразными "транспортными капсулами", доставляя имплантаты к очагам воспаления и защищая их от атак иммунной системы. Благодаря этому устройства могут безопасно преодолевать гематоэнцефалический барьер — естественную защиту мозга, которая обычно препятствует проникновению инородных частиц. После попадания в целевую зону имплантаты начинают работать в беспроводном режиме, получая энергию извне и передавая слабые электрические сигналы. Эти сигналы воздействуют на нейроны, восстанавливая их активность и стимулируя процессы регенерации. Технология позволяет создавать миллионы микроточек воздействия, что обеспечивает точность до нескольких микрометров.
Советы шаг за шагом
Эти шаги показывают, что будущее медицины движется к минимально инвазивным методам, где вмешательство становится точным, управляемым и безопасным для пациента. Ошибка — Последствия — Альтернатива
А что если… Если технология станет массовой, она может изменить подход к лечению неврологических заболеваний. Представьте, что при болезни Альцгеймера стимуляция нужных зон мозга восстановит память, а при опухолях — имплантаты будут точечно воздействовать на клетки, разрушая их без операции. Также устройства можно использовать для восстановления нейросвязей после инсультов. В долгосрочной перспективе технология откроет путь к созданию синтетических нейронов, способных взаимодействовать с естественными клетками мозга. Плюсы и минусы
FAQ Как вводятся имплантаты? Опасны ли они для мозга? Можно ли их извлечь? Когда начнутся испытания на людях? Могут ли имплантаты управляться дистанционно? Мифы и правда
Исторический контекст Первые эксперименты по соединению электроники и биологии начались ещё в 1990-х годах, когда учёные пытались использовать электроды для восстановления нервной активности. Однако такие методы требовали хирургического вмешательства и нередко вызывали воспаление. С развитием нанотехнологий и микроэлектроники появилась возможность создавать миниатюрные устройства, которые могут свободно перемещаться в организме. MIT стал одним из лидеров в этой области, объединяя инженеров, биологов и врачей. Сегодня их разработки открывают путь к новой эре — эре биоэлектронной медицины, где лечение основано не на таблетках, а на управлении биосигналами. Три интересных факта
Источник: www.newsinfo.ru Комментарии: |
|||||||||||||||||||||||||||||