Kimi представили новую модель - Kimi-Linear-48B-A3B-Base |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-11-03 12:07 Модель хороша тем, что даёт почти уровень больших LLM на длинных контекстах, но при этом заметно экономит память и работает быстрее за счёт линейной архитектуры. Что улучшили: - требует до 75% меньше памяти на KV-кэш - до 6.3? быстрее декодирование на длинных контекстах Как устроена: - гибридный подход: Kimi Delta Attention + MLA - модель хорошо оптимизирована под длиннный контекст и высокую пропускную способность По бенчмаркам модель обгоняет и MLA, и GDN-H, включая задачи с длинным контекстом. В задачах на рассуждения и длинную RL-генерацию Kimi-Linear показывает заметно лучшие результаты, чем MLA. Архитектура модели пример того, как линейные attention-архитектуры выходят на уровень, где они конкурируют с классическими решениями не только по скорости, но и по качеству. Github: github.com/MoonshotAI/Kimi-Linear Hf: https://huggingface.co/moonshotai/Kimi-Linear-48B-A3B-Instruct Источник: huggingface.co Комментарии: |
|