T-Pro 2.0 — LLM с гибридным режимом рассуждений

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Т-Банк релизнул модель с гибридным ризонингом в опенсорс.

T-Pro 2.0 дообучили на основе Qwen3 32B, улучшив качество и скорость генерации на русском языке.

Вместе с моделью впервые выложили инструктивный датасет. Как дообучали модель сегодня рассказали на Turbo ML конфе и выложили на хабр. (https://habr.com/ru/companies/tbank/articles/928956/)

Дообучение модели T-Pro 2.0 проходило в несколько этапов.

На основе токенизатора Qwen3 и с помощью расширения его кириллической части более, чем в 5 раз, разработчики получили улучшенный токенизатор для мультилингвальных моделей. По итогу токенизатор оказался на 30% более эффективен для русского языка. Затем за счет плотного токенизатора на двух доменах (чатовые запросы ru-arena-hard и олимпиадные математические задачи из T-Math) ускорили инференс.

Следующим шагом было дообучение на большом русскоязычном инструктивном корпусе. Далее модель дообучали на более чистом SFT-сете, сформированном из разнообразных промптов, собранных вручную, из открытых источников и переводов англоязычных наборов данных. Для формирования итогового датасета ответы на инструкции генерировались с помощью более мощных моделей, таких как DeepSeek-V3 0324 и Qwen3-235B-A22B. Это позволило обеспечить высокий уровень точности и релевантности.

На стадии Preference tuning для обучения DPO сформировали набор данных с фильтрацией по длине и типу для general-инструкций и сохранением баланса доменов для reasoning-инструкций.

На финальном этапе Speculative decoding в качестве драфт- модели выбрали EAGLE 1 с генерацией драфта во время инференса с помощью tree attention согласно EAGLE 2.

Бенчмарки моделей

Для того, чтобы оценить способности моделей к ведению диалога, следованию инструкциям и решению задач разработчики использовали LLM-as-a-judge-арены: Arena Hard Ru, Arena Hard 2 и арену WildChat Hard Ru. В последней в качестве бейзлайна использовались ответы модели o3-mini, а “судьей” для всех арен выступал DeepSeek V3 0324. Для оценки знаний о мире и общим логическим способностям моделей на русском языке использовались бенчмарки MERA, MaMuRAMu, ruMMLU, ruMMLU-Pro.

Бенчмарки AIME, MATH-500, GPQA Diamond, Vikhr Math, Vikhr Physics, LiveCodeBench v4_v5 позволили оценить способности reasoning-модели к рассуждениям и решению сложных задач. Англоязычные бенчмарки были целиком локализованы на русский язык ИИ-тренерами: ruAIME, ruMATH-500, ru GPQA Diamond, ruLCB. Компания также использовала свой бенчмарк Т-Math, (https://huggingface.co/datasets/t-tech/t-math) чтобы расширить оценку математических способностей на русском языке.

Задачи, которые закрывает T-Pro 2.0

Дообучение даже продвинутых LLM позволяет управлять стоимостью инференса и скоростью генерации, дообучать важные домены (саппорта или распределение внутреннего промтинга), уменьшить количества артефактов и проблем с русским языком.

Модель T-Pro 2.0 доступна по лицензии Apache 2.0, ее можно бесплатно использовать как для решения задач в промптинге, так и для дообучения на свои задачи.

Hugging face: T-Pro 2.0 (https://huggingface.co/t-tech/T-pro-it-2.0)

Датасет T-wix (https://huggingface.co/datasets/t-tech/T-Wix)


Источник: huggingface.co

Комментарии: