MedGemma: открытые ИИ-модели для медицины от Google

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2025-07-11 12:00

ии в медицине

Google Research продолжают развивать свою линейку специализированных медицинских ИИ-моделей, представив два важных пополнения: MedGemma и MedSigLIP.

Это серьезное пополнение экосистемы (https://developers.google.com/health-ai-developer-foundations) открытых и доступных инструментов для здравоохранения. Разработчики предлагают мощные базовые модели, которые можно дообучать и запускать на собственном железе, даже на потребительском GPU.

Флагман релиза MedGemma (https://deepmind.google/models/gemma/medgemma/) - 2 мультимодальные модели на 4 и 27 миллиардов параметров на основе Gemma 3.

Младшая, 4-миллиардная версия, показывает себя как один из лучших открытых «малышей» (<8B), а после дообучения достигает SOTA в генерации отчетов по рентгеновским снимкам. В ходе одного из тестов 81% сгенерированных ею заключений были признаны сертифицированными радиологами достаточно точными.

Старшая, на 27 миллиардов, в текстовой версии, на бенчмарке MedQA набрала 87.7%. Это всего на 3 пункта ниже DeepSeek R1, но при этом модель требует в 10 раз меньше ресурсов для инференса.

Глазами для MedGemma служит MedSigLIP (https://github.com/google-health/medsiglip) - легковесный (всего 400М параметров) энкодер изображений.

Его задача - классификация, поиск и другие задачи со структурированным выходом. Он был создан адаптацией общей модели SigLIP на огромном массиве медицинских данных (от рентгена до гистологии и снимков глазного дна).

Ключевая особенность и MedGemma, и MedSigLIP в том, что при специализации они не растеряли своих общих знаний.

Они по-прежнему понимают немедицинский контекст и умеют работать с разными языками, что подтвердили исследователи из Тайваня, успешно применявшие модель в связке с литературе на традиционном китайском.

Лицензирование: Health AI Developer Foundations (https://developers.google.com/health-ai-developer-foundations/terms).

Страница проекта (https://deepmind.google/models/gemma/medgemma/)

Набор моделей (https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4)

Документация (https://developers.google.com/health-ai-developer-foundations/medgemma)

Arxiv (https://arxiv.org/abs/2507.05201)

Demo (https://huggingface.co/spaces/google/appoint-ready)


Источник: huggingface.co

Комментарии: