ReasonIR: обучение ретриверов для ризонинга

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Традиционные модели для поиска информации часто проваливаются в задачах, где нужны глубокие рассуждения: короткие фактологические запросы и простые документы из обучающих данных не учат их работать с многошаговыми вопросами.

ReasonIR (https://arxiv.org/pdf/2504.20595) был создан, чтобы решить эту проблему через синтетическую генерацию данных. Авторы создали ReasonIR-Synthesizer — пайплайн, который генерирует сложные запросы и «ложные» документы, похожие на полезные, но бесполезные на деле. Это заставляет модель учиться отличать настоящие паттерны, а не хвататься за поверхностные совпадения.

Особенность метода — 2 типа данных:

Первый, VL (varied-length), включает запросы длиной от 300 до 2000 слов, чтобы модель научилась работать с контекстом любой сложности.

Второй, HQ (hard queries), — это вопросы, требующие анализа и логических шагов, например: «Как изменения климата повлияют на экономику прибрежных регионов к 2040 году?».

Для обучения тестовой модели ReasonIR-8B (https://huggingface.co/reasonir/ReasonIR-8B) использовали контрастивное обучение с «хард негативами» (документами, которые кажутся релевантными, но таковыми не являются). Под капотом — доработанная LLama3.1-8B с двунаправленной маской внимания, обученная на смеси публичных данных (1,3 млн. примеров) и синтетики (около 345 тыс.).

На бенчмарке BRIGHT (https://github.com/xlang-ai/BRIGHT), (задачи из биологии, экономики и программирования), ReasonIR-8B показала 29.9 nDCG@10 без реранкера и 36.9 — с ним. Для сравнения: BM25, классический алгоритм, дает всего 14.8.

В RAG-сценариях модель подняла точность на MMLU на 6.4%, а на GPQA — на 22.6%, обогнав даже поисковик you.com. Причем чем детальнее переписывался запрос (например, добавлением контекста через GPT-4), тем лучше работала модель — другие ретриверы на длинных запросах «задыхались».

Авторы также оптимизировали вычисления: модель обходит LLM-реранкеры в 200 раз по эффективности, экономя ресурсы без потерь в качестве.

Пример инференса на Transformers:

```

from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("reasonir/ReasonIR-8B", torch_dtype="auto", trust_remote_code=True)

query = "The quick brown fox jumps over the lazy dog."

document = "The quick brown fox jumps over the lazy dog."

query_instruction = ""

doc_instruction = ""

model = model.to("cuda")

model.eval()

query_emb = model.encode(query, instruction=query_instruction)

doc_emb = model.encode(document, instruction=doc_instruction)

sim = query_emb @ doc_emb.T

```

Лицензирование кода : CC-BY-NC-4.0 License.

Лицензирование модели: CC-BY-SA-4.0 License.

Модель (https://huggingface.co/reasonir/ReasonIR-8B)

Arxiv (https://arxiv.org/pdf/2504.20595)

GitHub (https://github.com/facebookresearch/ReasonIR)


Источник: github.com

Комментарии: