![]() |
![]() |
![]() |
![]() |
Как NVIDIA учит роботов жить в реальном мире через симуляции и нейросети |
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-05-12 14:29 Представьте: вы приходите домой, а робот уже накрыл ужин при свечах и убрал беспорядок после вчерашней вечеринки. И вы не можете отличить, человек это сделал или машина. Это «физический тест Тьюринга» — новая веха в робототехнике, о которой в своем выступлении рассказал Джим Фан, (https://jimfan.me/) директор по робототехнике в NVIDIA. Но почему до сих пор ни один робот не справляется с банановой кожурой на полу, а завтрак с хлопьями получается лишь на твердую тройку? Проблема - в данных. Если ИИ для языка «питается» текстами из интернета, то роботам нужны данные из реального мира: сигналы управления, физические параметры, обратная связь от движений. Собрать их сложно и дорого. В NVIDIA используют телеметрию: операторы в VR-шлемах управляют роботами, записывая каждое действие. Но это медленно, а масштабировать такой сбор данных почти невозможно. «Это как ископаемое топливо, только хуже — вы сжигаете человеко-часы», — говорит Фан. Очевидное решение — использовать симуляции. NVIDIA запустила проект Dr. Eureka, (https://github.com/eureka-research/DrEureka) где роботов учат в виртуальных мирах. Например, робособака учится балансировать на мяче, а гуманоид осваивает ходьбу за два часа симуляции вместо десяти лет проб и ошибок. Для этого запускают 10 000 параллельных сред с разной гравитацией, трением и весом (это называют «рандомизацией домена»). Если нейросеть справляется в миллионе вариаций, она справится и в реальности. Но симуляции, к сожалению, не панацея. Традиционные методы требуют ручной настройки каждого объекта. Тут на помощь приходят генеративные модели: Stable Diffusion создает текстуры, ИИ генерирует 3D-сцены, а язык XML пишется через запросы к нейросети. Так появился фреймворк Robocasa (https://github.com/robocasa/robocasa) — «цифровой двойник» реального мира, где всё, кроме робота, создано алгоритмами. Даже видео с роботом, играющим на укулеле, — фейк, сгенерированный видео-диффузионной моделью. Ключевой прорыв - модель GROOT, (https://huggingface.co/nvidia/GR00T-N1-2B) которую NVIDIA открыла для сообщества. Она преобразует изображения и команды в движения, управляя роботом «из коробки». GROOT N1 ловко наливает шампанское или сортирует детали на конвейере. А все благодаря компактной архитектуре, всего 1.5 млн параметров, что меньше, чем у многих мобильных приложений. Что дальше? Фан говорит о «физическом API» — слое, который превратит роботов в универсальных исполнителей. Представьте: вы запрашиваете навык «приготовить ужин от Мишлен» через облако, и робот делает это без программирования. Или роботы-курьеры сами перестраивают логистику, общаясь через язык действий. «Все, что движется, станет автономным», — цитирует Фан CEO NVIDIA Дженсена Хуанга. Главное препятствие кроется в этапе перехода от «цифровых близнецов» к нейросетевым симуляциям («цифровым кочевникам»), которые смогут предсказывать миллионы сценариев. Тут уже не хватит классических методов - нужны гибридные системы, где физика сочетается с генеративными моделями. И судя по темпам (за год нейросети научились реалистично имитировать жидкости и деформации), будущее ближе, чем кажется. Так когда же мы пройдем физический тест Тьюринга? Возможно, это случится в один из обычных вторников — без анонсов и громких презентаций, как это произошло с языковыми моделями. И тогда роботы станут невидимым фоном жизни, как электричество или Wi-Fi. А мы очень быстро забудем, как жили без них. Посмотреть все доклады с мероприятия AI Ascent 2025 на Youtube. (https://www.youtube.com/playlist?list=PLOhHNjZItNnMEqGLRWkKjaMcdSJptkR08) Источник: www.youtube.com Комментарии: |
|