Разработана новая технология искусственного интеллекта, обрабатывающая изображения подобно мозгу человека |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-04-23 12:42 Группа исследователей из Института фундаментальных наук (IBS), Университета Ёнсе и Института Макса Планка разработала новую технологию искусственного интеллекта (ИИ), которая приближает машинное зрение к тому, как человеческий мозг обрабатывает изображения. Этот метод, получивший название Lp-Convolution, повышает точность и эффективность систем распознавания изображений, снижая при этом вычислительную нагрузку на существующие модели ИИ. Человеческий мозг удивительно эффективно распознаёт ключевые детали в сложных сценах — способность, которую традиционные системы искусственного интеллекта с трудом воспроизводят. Свёрточные нейронные сети (CNN) — наиболее широко используемая модель искусственного интеллекта для распознавания изображений — обрабатывают изображения с помощью небольших квадратных фильтров. Несмотря на эффективность, такой жёсткий подход ограничивает их способность выявлять более широкие закономерности в фрагментированных данных. В последнее время Vision Transformers (ViT) продемонстрировали превосходную производительность при анализе целых изображений за один раз, но они требуют больших вычислительных мощностей и больших наборов данных, что делает их непригодными для многих реальных приложений. Вдохновившись тем, как зрительная кора головного мозга избирательно обрабатывает информацию с помощью циклических, редких связей, исследовательская группа попыталась найти золотую середину: может ли подобный подход сделать свёрточные нейронные сети одновременно эффективными и мощными? Чтобы ответить на этот вопрос, команда разработала Lp-Convolution — новый метод, который использует многомерное обобщённое нормальное распределение (MPND) для динамического изменения формы фильтров CNN. В отличие от традиционных CNN, которые используют фиксированные квадратные фильтры, Lp-Convolution позволяет моделям ИИ адаптировать форму фильтров — растягивая их по горизонтали или вертикали в зависимости от задачи, подобно тому, как человеческий мозг выборочно фокусируется на важных деталях. Этот прорыв решает давнюю проблему в исследованиях в области ИИ, известную как проблема больших ядер. Простое увеличение размеров фильтров в свёрточных нейронных сетях (например, использование ядер 7?7 или больше) обычно не повышает производительность, несмотря на добавление большего количества параметров. Lp-свёртка преодолевает это ограничение, вводя гибкие, биологически обоснованные схемы соединений. В тестах на стандартных наборах данных для классификации изображений (CIFAR-100, TinyImageNet) Lp-свёртка значительно повысила точность как классических моделей, таких как AlexNet, так и современных архитектур, таких как RepLKNet. Метод также оказался очень устойчивым к повреждённым данным, что является серьёзной проблемой в реальных приложениях ИИ. ![]() Более того, исследователи обнаружили, что когда Lp-маски, используемые в их методе, напоминали гауссово распределение, внутренняя обработка данных ИИ в точности соответствовала биологической нейронной активности, что было подтверждено сравнением с данными о мозге мышей. «Мы, люди, быстро определяем, что важно в многолюдной сцене, — сказал доктор Джастин Ли, директор Центра когнитивных и социальных исследований при Институте фундаментальных наук. — Наша Lp-свёртка имитирует эту способность, позволяя ИИ гибко фокусироваться на наиболее важных частях изображения — как это делает мозг». В отличие от предыдущих разработок, которые либо полагались на небольшие жёсткие фильтры, либо требовали ресурсоёмких преобразователей, Lp-свёртка предлагает практичную и эффективную альтернативу. Это нововведение может произвести революцию в таких областях, как: – Автономное вождение, при котором искусственный интеллект должен быстро обнаруживать препятствия в режиме реального времени – Медицинская визуализация, улучшающая диагностику на основе искусственного интеллекта за счет выделения тонких деталей – Робототехника, обеспечивающая более интеллектуальное и адаптируемое машинное зрение в изменяющихся условиях «Эта работа — важный вклад как в искусственный интеллект, так и в нейробиологию, — сказал директор К. Джастин Ли. — Более тесно связав искусственный интеллект с мозгом, мы раскрыли новый потенциал свёрточных нейронных сетей, сделав их более умными, адаптируемыми и биологически реалистичными». Источник: russianelectronics.ru Комментарии: |
|