На прошлой неделе прошла 39-я ежегодная конференция по искусственному интеллекту AAAI в Филадельфии ?

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


2025-03-04 17:24

Семинары

В этом году очно на мероприятии выступили Елена Тутубалина, руководитель группы «Прикладное NLP», и научный сотрудник AIRI Олег Сомов.

От AIRI было представлено несколько статей:

Confidence Estimation for Error Detection in Text-to-SQL Systems

В статье Олега Сомова и Елены Тутубалиной изучается интеграция внешних классификаторов в системы Text-to-SQL для улучшения их надежности. Авторы построили набор Text-to-SQL систем c внешним классификатором и провели анализ качества поиска некорректных генераций с помощью оценки неопределенности. Эксперименты показали: модели архитектуры энкодер-декодер лучше калиброваны чем декодер-модели и позволяют лучше детектировать некорректные генерации.

From Logistic Regression to the Perceptron Algorithm: Exploring Gradient Descent with Large Step Sizes

В статье, подготовленной Александром Тюриным, объясняется, почему логистическая регрессия с градиентным спуском работает при больших шагах, как это связано с перцептроном, а также предлагается более эффективный подход для решения задач классификации.

Certification of Speaker Recognition Models to Additive Perturbations

Статья, написанная Дмитрием Коржом, Эльвиром Каримовым, Михаилом Паутовым, Олегом Роговым и Иваном Оселедцем, посвящена применению методов сертификации и устойчивости моделей идентификации по голосу.

MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale

Антон Андрейчук, Константин Яковлев, Александр Панов, Алексей Скрынник разработали MAPF-GPT — первую фундаментальную модель для многоагентного обучения с подкреплением в задаче планирования путей, которая работает эффективнее существующих обучаемых и классических солверов.

UniDet3D: Multi-dataset Indoor 3D Object Detection

В статье, написанной Максимом Колодяжным, Матвеем Скрипкиным, Антоном Конушиным, Анной Воронцовой и Данилой Руховичем, представлен простой, но эффективный универсальный метод 3D-обнаружения объектов в помещениях, обученный на объединённых наборах данных, который демонстрирует значительное улучшение точности на шести различных бенчмарках благодаря унификации пространств меток и использованию трансформер-энкодера.

Делимся фотографиями с конференции!


Источник: vk.com

Комментарии: