![]() |
![]() |
![]() |
|||||
![]() |
Как работают большие модели LLM |
||||||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-03-06 16:10 ![]() Как работают большие модели LLM. Общий процесс: Шаг 1) Изучение больших объемов текстовых данных LLM тренируются на огромных наборах данных (книги, веб-сайты и код), чтобы распознавать закономерности и связи между словами. Этот текст очищается и разбивается на токены — небольшие фрагменты, которые может обработать машина. Шаг 2) Обучение модели Используя технику глубокого обучения - трансформеры (transformer), LLM анализируют контекстные связи между словами. Они совершенствуются со временем, корректируя свои внутренние настройки (веса) с помощью градиентного спуска — процесса проб и ошибок, который минимизирует ошибки. Шаг 3) Тонкая настройка для специальных задач После обучения LLM настраиваются под конкретные приложения, такие как кодинг или поддержка клиентов. Это делается с помощью контролируемого обучения (supervised learning), обучения с подкреплением (Reinforcement Learning) на основе обратной связи с человеком (RLHF) или адаптации с низким рангом (LoRA) для повышения точности. Шаг 4) Формирование ответов При вводе запроса LLM обрабатывает ввод, предсказывает наиболее вероятные следующие токены и генерирует ответ. Для повышения точности и релевантности некоторые модели перед генерацией ответа используют RAG-генерацию (Retrieval-Augmented Generation) с поиском внешних источников информации (например, базы данных или документы), чтобы предоставить более фактические ответы. Затем для уточнения окончательного вывода LLM применяет стратегии декодирования, такие как лучевой поиск (beam search) и выборка ядра (nucleus sampling). Шаг 5) Фильтрация и оптимизация Перед развертыванием LLM проходят через фильтры безопасности для удаления предвзятостого и вредоносного контента. Они также оптимизируются с использованием таких методов, как квантизация и обрезка, что делает их эффективными для облачного и локальных ИИ. Какие существуют проблемы? LLM сталкиваются с такими проблемами, как галлюцинации (ложные результаты), предвзятость и высокие вычислительные затраты. Инженеры оптимизируют их с помощью RAG, спекулятивного декодирования, гибридного развертывания в облаке и других решений. Источник: vk.com Комментарии: |
||||||