![]() |
![]() |
![]() |
|||||
![]() |
SigLIP2 – это семейство визуально-языковых энкодеров, разработанных для улучшенного семантического понимания, точного локализования объектов и извлечения плотных (dense) признаков из изображений |
||||||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-02-23 18:32 ![]() В основе его концепции лежит возможность проводить классификацию изображений без дополнительного обучения на конкретных объектах – так называемая zero-shot классификация. Это позволяет применять модель к новым задачам и доменам, где может не быть размеченных данных. Как работает инструмент? - Патчевое представление изображений: Изображение разбивается на небольшие участки (патчи), которые затем обрабатываются энкодером. Это позволяет модели эффективно извлекать пространственные признаки даже при изменении разрешения. - Совмещение текстовых и визуальных признаков: Модель обучена сопоставлять описания на естественном языке с визуальными объектами. Такой подход даёт возможность «понимания» изображения через текстовые описания, что особенно полезно в zero-shot сценариях. - Мульти-языковая поддержка: Благодаря обучению на данных на разных языках, SigLIP2 демонстрирует высокую эффективность в задачах, где требуется понимание многоязычных текстовых описаний. - Различные архитектурные варианты: Коллекция включает модели с различными размерами патчей (например, patch16 или patch32) и оптимизированными архитектурами (например, с динамическим разрешением или с использованием shape-optimized So-400m backbones). Это позволяет подобрать оптимальный вариант для конкретной задачи . За счёт плотного представления признаков, модель способна не только определять, что изображено на картинке, но и точно локализовать объекты внутри изображения. Примеры применения Системы безопасности и наблюдения: Автоматическая идентификация и локализация объектов в реальном времени. Мультимодальные поисковые системы: Улучшение результатов поиска за счёт объединения визуальных и текстовых данных. Мобильные приложения и AR: Интеграция возможностей классификации изображений без необходимости обучения модели на каждом устройстве. SigLIP2 – это мощный инструмент, который демонстрирует значительный прогресс в области визуально-языкового анализа. Его способность работать в режиме нулевого обучения, мульти-языковая поддержка и высокая точность извлечения признаков открывают новые горизонты для разработчиков и исследователей в области компьютерного зрения. Если вы ищете решение для задач, где требуется быстрая адаптация модели к новым данным и языкам, SigLIP2 может стать отличным выбором. https://huggingface.co/collections/google/siglip2-67b5dcef38c175486e240107 Источник: huggingface.co Комментарии: |
||||||