![]() |
![]() |
![]() |
|||||
![]() |
Генерация изображений байесовскими методами |
||||||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ Атаки на ИИ Внедрение ИИИИ теория Компьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Промпты. Генеративные запросы Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-02-24 14:47 ![]() ![]() Исследователи из Мюнхенского университета предложили методику генерации изображений, основанную на байесовском выводе. Экспериментальная модель, которая получила название Bayesian Sample Inference (BSI), имитирует процесс постепенного уточнения данных: ее инференс начинается с «размытого» представления об изображении и последовательно корректируется с использованием шумовых измерений до финального результата. По заверениям авторов, их метод позволяет точнее воспроизводить распределение данных, чем классические решения на основе диффузии. BSI-модель стартует с априорного распределения, где начальная точность намеренно задаётся низкой — это эквивалентно «размытой картинке», покрывающей всё множество возможных изображений. На каждом шаге генерации, предиктор, построенный на U-Net или ViT, анализирует текущий промежуточный «результат» и генерирует оценку соответствия относительно "идеального" изображения, который, в свою очередь, участвует в пересчете среднего значения и точности для следующего шага генерации. Такой подход позволяет BSI-модели балансировать между имеющимися знаниями и новыми данными, избегая переобучения и сохраняя разнообразие генерации. Эксперименты выявили, что BSI сохраняет разнообразие сгенерированных образцов даже при малом числе шагов — это выгодно отличает её от аналогов, склонных к «повторяющимся» генерациям. BSI напрямую сравнивали с диффузионными VDM- и EDM-моделями и BFNs. Оказалось, что BSI-архитектура не только включает BFNs как частный случай, но и превосходит их в тестах на правдоподобие. Например, на наборах CIFAR10 и ImageNet BSI показала лучшие результаты, достигнув 2.64 (BFNs) и 3.22 (VDM) бит на измерение соответственно, но не смогла превзойти модели с точным расчетом правдоподобия (i-DODE). Эта новая потенциально методика может стать гейм-чейнджером для генерации изображений. Практическая реализация метода доступна в репозитории проекта на Github (https://github.com/martenlienen/bsi), где представлены инструменты для инференса (https://github.com/martenlienen/bsi?tab=readme-ov-file#getting-started), обучения (https://github.com/martenlienen/bsi?tab=readme-ov-file#training) и файнтюнинга (https://github.com/martenlienen/bsi?tab=readme-ov-file#fine-tuning). Лицензирование: MIT License. Arxiv (https://arxiv.org/abs/2502.07580) GitHub (https://github.com/martenlienen/bsi) Источник: github.com Комментарии: |
||||||