В клетки млекопитающих включили хлоропласты и запустили фотосинтез |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-01-21 12:24 Японским исследователям удалось включить хлоропласты красной водоросли в клетки млекопитающих и пронаблюдать в них фотосинтетическую активность в течение не менее двух дней. Отчет о работе опубликован в журнале Proceedings of the Japan Academy, Series B. Первые указания на появление фотосинтеза имеют возраст около 3,4 миллиарда лет; прямые его свидетельства в виде тилакоидных мембран цианобактерий — около 1,8 миллиарда лет. 1,2–1,6 миллиарда лет назад цианобактерии были захвачены эукариотическими клетками, что привело к их успешному эндосимбиозу, в результате которого появились хлоропласты растений. В середине XX века было показано, что изолированные хлоропласты в течение некоторого времени сохраняют фотосинтетическую активность, хотя механизмы этого недостаточно ясны. После этого разные научные группы разными способами пытались включить эти органеллы в несвойственные им клетки, но они сохраняли свою морфологию лишь несколько часов, и их фотосинтетическая активность в новом окружении подтверждена не была. Сатихиро Мацунага (Sachihiro Matsunaga) из Токийского университета с коллегами выделили хлоропласты из одноклеточной красной водоросли Cyanidioschyzon merolae, которая сохраняет примитивные черты и обитает в горячих вулканических источниках с высокой кислотностью воды. Ее хлоропласты активны при температуре ниже 37 градусов Цельсия, сохраняют свою структуру в изолированном состоянии и редко дифференцируются в другие пластиды при изменении условий среды, что делает их перспективными кандидатами для инкорпорации в другие клетки. Выделенные хлоропласты сохраняли фонтосинтетическую активность и морфологию даже спустя шесть дней хранения при температуре четыре градуса Цельсия. Полученные хлоропласты культивировали совместно с клетками яичника китайского хомячка (Cricetulus griseus) широко применяемой в биотехнологии иммортализованной линии CHO-K1 в соотношении 100 к 1. В тот же день конфокальная микроскопия показала, что около 20 процентов клеток захватили 1–3 хлоропласта, а около процента содержали большое количество (7–45) этих органелл. На второй день клетки с хлоропластами демонстрировали более высокую скорость роста, чем контрольные. Через два и четыре дня совместной культивации число захваченных органелл в клетках снижалось — вероятно, либо вследствие внутриклеточного их переваривания, либо в результате случайного распределения между дочерними клетками в ходе деления. Хлоропласты располагались во внутриклеточных везикулах циркулярно вблизи ядра, не проникая в него, и были окружены митохондриями; нативная ДНК в них сохранялась. Авторы работы использовали флуоресцентную микроскопию для идентификации этих органелл по содержанию в них хлорофилла и сканирующую электронную микроскопию для детального изучения их мембран. Хлоропласты обладали двойной наружной мембраной и множественными слоями тилакоидных мембран. В первый день совместной культивации у некоторых из них эта слоистая структура была интактной, у других — частично деформированной. Через два дня у части хлоропластов увеличились расстояние между тилакоидными мембранами и размер пластоглобул (липопротеиновых частиц с пластохиноном, появляющихся в ответ на стресс). Через четыре дня тилакоидные мембраны деградировали. Для оценки фотосинтетической активности — транспорта электронов в фотосистеме II — исследователи воспользовались флуориметрией с визуализационной амплитудно-импульсной модуляцией (Imaging-PAM). В первый день и через два дня совместной культивации эта активность в захваченных клетками хлоропластах значимо не отличалась от таковой в изолированных органеллах, но к четвертому дню существенно снижалась. Таким образом, при правильном подборе хлоропластов и клеток-реципиентов эти органеллы могут сохранять структуру и фотосинтезирующую активность в течение как минимум двух дней после захвата. Подобный нисходящий подход синтетической биологией может служить основой для получения искусственно фотосинтезирующих животных клеток, заключают авторы работы. Ранее китайские исследователи создали наноструктуры с тилакоидами хлоропластов и внедрили их в хондроциты мышей, которые затем пересадили в суставные хрящи живым животным. Их итальянские коллеги смогли собрать фотосинтетический аппарат в искусственной клетке, использовав только основной трансмембранный белок реакционного центра пурпурных бактерий. Источник: nplus1.ru Комментарии: |
|