Недавно Google Cloud выпустил «Руководство разработчика PyTorch по основам JAX»

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow.

Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным.

Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений.

Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков.

В этом руководстве содержится пошаговый гайд по реализации простой нейтронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX.

Читать (https://cloud.google.com/blog/products/ai-machine-learning/guide-to-jax-for-pytorch-developers)

Документация Jax (https://jax.readthedocs.io/en/latest/quickstart.html)


Источник: jax.readthedocs.io

Комментарии: