Недавно Google Cloud выпустил «Руководство разработчика PyTorch по основам JAX» |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2025-01-10 18:46 Jax – это фреймворк для машинного обучения, подобный PyTorch и TensorFlow. Его разработали в Deepmind, хотя он не является официальным продуктом Google, он остается популярным. Jax объединяет Autograd и XLA (Accelerated Linear Algebra - компилятор с открытым исходным кодом для машинного обучения) для обеспечения высокопроизводительных численных вычислений. Созданный на основе NumPy, его синтаксис следует той же структуре, что делает его простым выбором для разработчиков. В этом руководстве содержится пошаговый гайд по реализации простой нейтронной сети на Pytorch (JAX + Flax NNX) для тех, кто хочет начать работать с JAX. Читать (https://cloud.google.com/blog/products/ai-machine-learning/guide-to-jax-for-pytorch-developers) Документация Jax (https://jax.readthedocs.io/en/latest/quickstart.html) Источник: jax.readthedocs.io Комментарии: |
|