Wavehax: нейросетевой вокодер без эффекта наложения частот

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Wavehax - нейросетевой вокодер, который синтезирует аудиосигналы без искажений, вызванных наложением частот. Эта проблема часто возникает в моделях, работающих во временной области, где нелинейные операции и слои повышения дискретизации могут привести к наложению высокочастотных компонентов на низкочастотный диапазон.

Wavehax работает в частотно-временной области, оценивая комплексные спектрограммы и преобразуя их во временные сигналы с помощью кратковременного преобразования Фурье (STFT). Использование STFT позволяет получать более высокое качество синтезированной речи, особенно при экстраполяции на высокие значения основной частоты (F0).

Архитектура Wavehax построена на 2D CNN и специальном гармоническом априоре. Априор представляет собой комплексную спектрограмму, полученную из гармонического сигнала, который помогает модели генерировать высококачественные и согласованные по фазе гармонические компоненты.

В экспериментах, проведённых на корпусе японской речи JVS, Wavehax продемонстрировал качество речи, сравнимое с HiFi-GAN V1, при этом значительно сократив количество операций умножения-накопления и параметров модели.

Wavehax работает в 4 раза быстрее HiFi-GAN V1 на CPU и устойчив к экстраполяции на высокие значения F0, где эффект наложения частот становится особенно заметным.

Пример трейна и инференса с датасетом JVS:

# Set up the env  

cd wavehax

pip install -e .

# Extract F0 and mel-spectrogram.

wavehax-extract-features audio=data/scp/jvs_all.scp

# Compute statistics of the training data

wavehax-compute-statistics feats=data/scp/train_no_dev.list stats=data/stats/train_no_dev.joblib

# Train the vocoder model

wavehax-train generator=wavehax discriminator=univnet train=wavehax train.train_max_steps=500000 data=jvs out_dir=exp/wavehax

# Inference via generate speech waveforms

wavehax-decode generator=wavehax data=jvs out_dir=exp/wavehax ckpt_steps=500000

Страница проекта (https://chomeyama.github.io/wavehax-demo/)

Arxiv (https://arxiv.org/pdf/2411.06807)

GitHub (https://github.com/chomeyama/wavehax)


Источник: github.com

Комментарии: