Новый метод ученых МГУ сделает интернет быстрее и надежнее

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Ассистент кафедры автоматизации систем вычислительных комплексов ВМК МГУ Евгений Степанов представил новый метод балансировки транспортных потоков в наложенной сети с использованием многоагентного метода машинного обучения. Результаты исследования показали эффективность предложенного подхода в сравнении с традиционными алгоритмами.

В своём исследовании Евгений Степанов рассматривает задачу балансировки транспортных потоков в сети передачи данных, которая становится всё более актуальной в условиях роста интернет-трафика. С увеличением объёмов данных в наложенных сетях, таких как виртуальные частные сети (VPN), важность эффективного управления маршрутами и недопущения перегрузок каналов приобретает первостепенное значение.

Исследование предложило решение этой задачи с использованием многоагентного метода машинного обучения с подкреплением. Этот подход учитывает распределённое взаимодействие агентов, что позволяет эффективно управлять транспортными потоками в сети и минимизировать задержки при передаче данных. В рамках эксперимента новый метод показал преимущество перед классическими алгоритмами, такими как ECMP и UCMP, а также продемонстрировал результаты, сопоставимые с централизованными алгоритмами, такими как генетические алгоритмы.

Исследование показало, что предложенный метод Multi-Agent Routing using Hashing (MAROH) способен эффективно балансировать трафик в сети за счёт объединения децентрализованного обучения с подкреплением и консистентного хеширования. Этот метод позволяет каждому маршрутизатору сети адаптировать свои маршруты с учётом текущей загрузки каналов, что приводит к более справедливому распределению трафика и снижению перегрузок.

Экспериментальные исследования подтвердили, что новый метод достигает наибольшей эффективности при высокой нагрузке в сети. Были получены значительные улучшения в отклонениях загрузки каналов от средней, что превосходит результаты классических алгоритмов балансировки.

Предложенный метод имеет потенциал для применения в широком спектре задач, связанных с управлением сетевым трафиком. Он может быть полезен как в корпоративных сетях, так и в крупных дата-центрах и кампусных сетях, где важно эффективно распределять нагрузку и обеспечивать стабильность работы. Использование методов машинного обучения с подкреплением открывает новые возможности для оптимизации маршрутизации в условиях постоянного роста интернет-трафика.

«Развитие современных сетей требует новых подходов к управлению трафиком, и наш метод балансировки потоков с использованием многоагентного машинного обучения является важным шагом вперёд. Мы видим, как традиционные алгоритмы постепенно уступают место решениям, которые могут адаптироваться к сложным условиям и динамично изменяющимся нагрузкам. Наше исследование демонстрирует, что использование машинного обучения не только повышает эффективность, но и открывает новые перспективы для масштабируемых сетевых инфраструктур», – отметил ассистент кафедры автоматизации систем вычислительных комплексов ВМК МГУ Евгений Степанов.

Данное исследование открывает новые горизонты в области управления сетевым трафиком. Предложенный многоагентный метод машинного обучения может стать основой для дальнейших разработок и улучшений в области балансировки транспортных потоков в современных сетях передачи данных.

Источник информации: ВМК МГУ имени М.В. Ломоносова

Источник фото: ru.123rf.com


Источник: scientificrussia.ru

Комментарии: