MD4: Маскированная диффузия для дискретных данных |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-12-13 12:29 Маскированная (или абсорбирующая) диффузия - перспективный подход в генеративном моделировании дискретных данных, предлагающий альтернативу авторегрессионным моделям. MD4 (Masked Discrete Diffusion for Discrete Data) (https://arxiv.org/pdf/2406.04329) - метод, разработанный в Google DeepMind предлагает упрощенный и обобщенный подход к маскированной диффузии. Структура метода позволяет обучать обобщенные модели маскированной диффузии с гибкими схемами маскировки, зависящими от состояния данных. В основе MD4 лежит «маскирующий» процесс, превращающий исходные данные в состояние «маски» в случайный момент времени. Обращение этого процесса позволяет синтезировать новые данные, сохраняющие распределение обучающей выборки. Математически прямой процесс описывается как марковская последовательность дискретных случайных величин, индексируемых временным параметром от 0 до 1. MD4 продемонстрировал превосходство над диффузионными языковыми моделями по показателю перплексии на наборе данных OpenWebText и значительно обошел существующие дискретные диффузионные модели по качеству пиксельного моделирования изображений, достигая 2,75 бит на измерение для CIFAR-10 и 3,40 бит на измерение для ImageNet 64 ? 64. Эти результаты выше, чем показатели авторегрессионных моделей сопоставимого размера (GPT-2, PixelRNN, Gated PixelCNN, PixelCNN++, PixelSNAIL, Image Transformer, Sparse Transformer). Несмотря на все преимущества метода, MD4 склонен к переобучению, что снижает его эффективность для задач с нулевой выборкой по сравнению с более простыми моделями. Прикладная реализация MD4 опубликована в репозитории Google Deepmind (https://github.com/google-deepmind/md4), в котором представлена возможность повторить экспериментальное обучение на тексте или изображениях. Batch size зависит от вычислительных ресурсов. Для обучения модели MD4-S с длиной последовательности 1024, 8 GPU A100 могут поддерживать максимальный batch size=128. При запуске на TPU, 8 чипов v5litepod, batch size=32. Локальная установка и пример обучения на тексте и изображениях: # Create & activate env Лицензирование: Apache 2.0 License. Arxiv (https://arxiv.org/pdf/2406.04329) GitHub (https://github.com/google-deepmind/md4) Источник: github.com Комментарии: |
|