Эта статья представляет новую архитектуру под названием Mixture-of-Transformers (MoT), ориентированную на работу с мультимодальными моделями! |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-12-03 12:24 Такие модели способны обрабатывать текст, изображения и аудио в единой системе. MoT решает проблемы масштабирования, связанные с обучением больших языковых моделей (LLM), предлагая более экономичный подход, уменьшающий вычислительные затраты на этапе предварительного обучения. Основное новшество MoT заключается в раздельной обработке параметров для каждого типа данных (текста, изображений, звука), что позволяет сократить использование ресурсов без потери качества. Например, в задачах генерации текста и изображений MoT достигает производительности стандартных моделей при использовании лишь 55,8% их вычислительных операций. Кроме того, модель демонстрирует улучшенные показатели в задачах, где необходимо объединение нескольких модальностей, при меньших временных и вычислительных затратах https://arxiv.org/pdf/2411.04996 Источник: arxiv.org Комментарии: |
|