Применение нейронных сетей для распознавания хитинозой на изображениях

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Р. Р. Якупов, К. Б. Гусманова

DOI: 10.19110/geov.2024.9.5

Палеонтологическое определение микрофауны с помощью автоматизированного распознавания изображений представляет собой инновационное приложение существующих программных методов анализа и классификации на основе технологий компьютерного зрения и машинного обучения. Разработка программного обеспечения, способного распознавать хитинозои на снимках, упростит и ускорит обработку больших массивов данных по микрофоссилиям. Использование нейронных сетей для анализа изображений возможно и для других групп органических остатков.

Хитинозои имеют ряд преимуществ, позволяющих поэтапно оценить применимость технологии автоматизированного распознавания изображений для биостратиграфических задач по сравнению с другими группами микрофоссилий. Искусственная палеонтологическая классификация хитинозой построена на четких морфологических признаках и поддается формализации. На первом этапе решения задач распознавания проводилось построение функции классификации, прогнозирующей, к какому классу принадлежит ископаемое по входному вектору признаков: «хитинозоа» либо «нехитинозоа». Разработанная модель алгоритма распознавания хитинозой показала высокую степень точности (более 98 %).

Ключевые слова: хитинозои, распознавание изображений, нейронные сети, машинное обучение, палеонтология

https://geo.komisc.ru/images/stories/vestnik/2024/357/35-39-357.pdf


Источник: geo.komisc.ru

Комментарии: