Moirai-MoE: фундаментальная модель временных рядов на основе разреженной смеси экспертов |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-11-16 14:36 Фундаментальные модели временных рядов продемонстрировали впечатляющие результаты в задачах прогнозирования без предварительной настройки. Однако эффективное унифицированное обучение на временных рядах остается открытой проблемой. Существующие методы используют определенный уровень специализации модели, чтобы учесть высокую гетерогенность данных временных рядов. Moirai-MoE - модель для прогнозирования временных рядов от Salesforce AI Research, использующая один входной/выходной проекционный слой, при этом задача моделирования различных паттернов временных рядов делегируется разреженной смеси экспертов (MoE) в трансформерах. Moirai-MoE достигает специализации, управляемой данными, и работает на уровне токенов. Для повышения эффективности обучения Moirai-MoE использует целевую функцию только декодера, что позволяет параллельно обучать модель на различных контекстных длинах. Moirai-MoE была оценена на 39 наборах данных в сценариях прогнозирования внутри и вне распределения. Результаты подтверждают превосходство Moirai-MoE над существующими фундаментальными моделями, включая TimesFM, Chronos и Moirai. В частности, Moirai-MoE превосходит свою аналогичную модель Moirai на 17% при том же размере модели и превосходит другие фундаментальные модели временных рядов с до 65 раз меньшим количеством активных параметров. В открытый доступ на HF опубликованы 2 модели: Moirai-MoE-1.0-R-Small (https://huggingface.co/Salesforce/moirai-moe-1.0-R-small), 11 млн. активных параметров, 117 млн. общих; Moirai-MoE-1.0-R-Base (https://huggingface.co/Salesforce/moirai-moe-1.0-R-base), 86 млн. активных параметров, 935 млн. общих. Пример использования Moirai-MoE для составления прогнозов: import matplotlib.pyplot as plt Страница проекта (https://www.salesforce.com/blog/time-series-morai-moe/) Коллекция на HF (https://huggingface.co/collections/Salesforce/moirai-r-models-65c8d3a94c51428c300e0742) Arxiv (https://arxiv.org/pdf/2410.10469) GitHub (https://github.com/SalesforceAIResearch/uni2ts/tree/main/project/moirai-moe-1) Источник: github.com Комментарии: |
|