Marco-o1: модель рассуждений от Alibaba |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-11-23 14:17 Marco-o1 (https://huggingface.co/AIDC-AI/Marco-o1) – LLM, файнтюн-версия Qwen2-7B-Instruct для решения сложных задач, требующих рассуждений. В создании модели использовались методики Chain-of-Thought (CoT), поиска по дереву Монте-Карло (MCTS) и уникальные стратегии регулирования действий при рассуждении. Marco-o1 обучалась на 3 датасетах: отфильтрованный набор данных Open-O1 CoT, синтетический набор Marco-o1 CoT и собственный набор инструкций (https://github.com/AIDC-AI/Marco-o1/blob/main/data/CoT_demo.json) Marco. В модели реализованы 2 стратегии действий: "шаг как действие" и "мини-шаг как действие" (32 или 64 токена соответственно). Мини-шаг как действие обеспечивает более детальное исследование пространства решений. В Marco-o1 был внедрен механизм рефлексии, который побуждает модель переосмысливать свои рассуждения, что улучшает результаты инференса, особенно в сложных составных задачах. Модель оценивалась на наборах данных MGSM (английский и китайский). Результаты показали, что Marco-o1 превосходит Qwen2-7B-Instruct и демонстрирует улучшение точности на 6,17% для английского набора данных и 5,60% для китайского. Модель превзошла Google Translate в задачах языкового перевода, особенно при переводе разговорных выражений. В ближайших планах: Обучаются версии модели вознаграждения за результат (ORM) и вознаграждения за процесс (PRM). Reinforcement Learning: обучение с подкреплением для совершенствования рассуждений. Установка и локальный инференс: # Clone the repository Лицензирование: Apache 2.0 License. Модель (https://huggingface.co/AIDC-AI/Marco-o1) Версии GGUF (https://huggingface.co/bartowski/Marco-o1-GGUF) Arxiv (https://arxiv.org/pdf/2411.14405) Датасет (https://github.com/AIDC-AI/Marco-o1/blob/main/data/CoT_demo.json) GitHub (https://github.com/AIDC-AI/Marco-o1) Источник: github.com Комментарии: |
|