Awesome-list методов глубокого обучения на графах при смещении распределения |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-11-12 12:47 Смещение распределения в графовых данных — это расхождение в распределении данных между обучающим и тестовым наборами, оно может существенно снизить производительность модели машинного обучения. Репозиторий на Github (https://github.com/kaize0409/awesome-graph-ood), в котором собрана коллекция работ по обучению на графах в условиях смещения данных вне распределения (Out-of-Distribution, OOD) в трех основных сценария: обобщение графов OOD: адаптация графов во время обучения OOD: адаптация графов OOD во время тестирования. В каждом сценарии рассматриваются модельно-ориентированные и ориентированные на данные подходы. Для многих статей предоставлены ссылки на код, реализующий описанные методы. Arxiv (https://arxiv.org/pdf/2410.19265) GitHub (https://github.com/kaize0409/awesome-graph-ood) Источник: github.com Комментарии: |
|