Исследователи создают ИИ-ученых, и это получается лучше, чем ожидалось |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-10-01 11:57 Исследователи разрабатывают искусственный интеллект, способный самостоятельно формулировать гипотезы, проводить эксперименты и писать научные статьи. Разница между учеными, использующими ИИ, ИИ-учеными и «ИИ-учеными» Есть множество примеров того, как ученые используют ИИ. Один из них — исследование MIT в 2019 году. Тогда ИИ обучили на базе 1700 одобренных FDA (Управление по контролю за продуктами и лекарствами США) препаратов и 800 природных веществ, многие из которых были антибиотиками или обладали антибактериальными свойствами. ИИ проанализировал библиотеку из 6000 соединений, чтобы найти новое вещество с аналогичными свойствами. Так был обнаружен антибиотик Halicin. В 2023 году та же команда нашла второй антибиотик, который может быть эффективен против MRSA, устойчивой к антибиотикам бактерии. Обычно термин «ИИ-учёный» означает специалиста, который глубоко разбирается в ИИ, таких как большие языковые модели или искусственные нейронные сети. Однако всё чаще этот термин также используется для обозначения нового вида ИИ, который работает как учёный. Пока что этот ИИ-учёный изучает только модели ИИ, что делает его одновременно и ИИ-экспертом, и «ИИ-учёным» в прямом смысле. ИИ-учёный Японская компания Sakana AI финансирует лабораторию в Университете Британской Колумбии и Оксфордском университете для разработки ИИ, который сможет выполнять весь научный процесс самостоятельно. Этот ИИ должен изучать научную литературу, формулировать гипотезы, проводить эксперименты, писать научные статьи и проверять свои же работы на соответствие исходной научной литературе. Чтобы снизить вероятность ошибок, команда Университета Британской Колумбии разработала пошаговый процесс, который ИИ должен следовать. ИИ получает данные о модели ИИ или типе ИИ и выдвигает несколько гипотез о том, как можно улучшить данную модель. Он оценивает идеи на основе их «интересности, новизны и осуществимости». После выбора гипотезы ИИ проверяет базы данных, чтобы убедиться, что идея действительно нова и оригинальна. Затем он использует программу-помощника для написания кода и тестирования гипотезы, параллельно ведя исследовательские записи. Если необходимо, он проводит дополнительные эксперименты и пишет научную статью. На финальном этапе ИИ оценивает статью и может отклонить её, если обнаружит сфабрикированные данные или «галлюцинации» — ошибочные выводы, характерные для некоторых моделей ИИ. Один из исследователей признался, что им удалось снизить количество галлюцинаций только до десяти процентов. «Мы считаем, что десять процентов — это всё равно неприемлемо». Возможные недостатки Одна из распространённых проблем в ИИ — это предвзятость, связанная с популярностью. Исследователи также заметили эту проблему у ИИ-учёного: он может отдавать предпочтение областям, которые уже были хорошо изучены, или слишком высоко оценивать теории, на которые собрано больше данных. С другой стороны, ИИ может казаться более креативным, потому что у него нет интуиции или предыдущего опыта, которые могут ограничить возможности. Например, физик, изучающий квантовые частицы света, не мог в течение нескольких недель разработать способ наблюдения за определённым явлением. Подозревая, что его собственная интуиция мешает, он решил задействовать ИИ. В течение нескольких часов ИИ предложил эксперимент, который оказался успешным. Однако отсутствие интуиции и опыта у ИИ может мешать правильной интерпретации результатов. Исследователи из Университета Британской Колумбии сравнивают его выводы с выводами начинающих аспирантов, которые склонны делать поспешные или не совсем точные заключения. Кроме того, развитие ИИ-учёных поднимает этические вопросы. Кто будет получать признание за работу ИИ-учёного? А кто будет нести ответственность за ошибки, плагиат или искажение данных? Источник: habr.com Комментарии: |
|