Google снова показала квантовое превосходство — квантовые компьютеры стали ближе к практическому применению |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-10-12 11:53 Группа учёных под руководством Google сообщила о прорыве в области квантовых вычислений. Они снова продемонстрировали квантовое превосходство — способность квантового компьютера выполнять вычисления, на которые не способен классический, — но на этот раз сосредоточились на точности вычислений. Также учёные показали, что существуют фазовые переходы в вычислительных процессах, что открывает путь к дальнейшему развитию квантовых технологий. Источник изображений: Google, Nature Ещё в 2019 году Google заявляла о достижении квантового превосходства, вызвав бурные споры в научном сообществе. Тогда IBM подвергла сомнению этот результат, утверждая, что классические алгоритмы могут быть оптимизированы для решения аналогичных задач. В новой работе, опубликованной в журнале Nature, учёные описали эксперимент с использованием метода случайной выборки цепей (Random Circuit Sampling, RCS), в ходе которого 67-кубитная система выполнила 32 цикла вычислений. Акцент сделан не на квантовом превосходстве, а на том, что даже при наличии шумов — основного ограничения для квантовых процессоров и главной причины ошибок вычислений — можно добиться вычислительных успехов, которые превосходят возможности классических систем. Это доказывает, что квантовые вычисления приближаются к фазе практического применения. Термин «квантовое превосходство» вызывает определённые споры в научном сообществе. Некоторые исследователи предпочитают использовать термины «квантовая полезность» (Quantum Utility) или «квантовое преимущество» (Quantum Advantage). Последний термин подразумевает не только теоретическое превосходство квантовых устройств, но и их практическую пользу. В отличие от квантового превосходства, которое не связано с реальной полезностью для задач, квантовое преимущество предполагает выполнение задач быстрее и эффективнее, чем на классических компьютерах. Квантовые процессоры, несмотря на их потенциал, остаются чрезвычайно чувствительными к внешним шумам, таким как температурные колебания, магнитные поля или даже космическая радиация. Эти помехи могут существенно снижать точность вычислений. В исследовании Google учёные изучили влияние шума на работу квантовых устройств и провели эксперимент, который позволил исследовать два ключевых фазовых перехода: динамический переход, зависящий от числа циклов, и квантовый фазовый переход, влияющий на уровень ошибок. Результаты показали, что даже в условиях шума квантовые системы эпохи NISQ могут достичь вычислительной сложности, недоступной для классических систем. Фазовые переходы в случайной выборке цепей (RCS). График иллюстрирует два фазовых перехода. Первый — от сосредоточенного распределения битовых строк на малом числе циклов к широкому или антиконцентрированному распределению. Второй — переход в условиях шума, при котором высокая ошибка на цикл приводит к переходу от системы с полной корреляцией к представлению в виде нескольких несвязанных подсистем Метод случайной выборки цепей (RCS), использованный в эксперименте, ранее подвергался критике за свою простоту и кажущуюся бесполезность. Однако Google подчёркивает, что RCS является ключевым методом для перехода к задачам, которые невозможно решить на классических компьютерах. Этот метод оптимизирует квантовые корреляции с использованием операций типа iSWAP, что предотвращает упрощение классических эмуляций. Благодаря этому подходу Google смогла чётко обозначить границы возможностей квантовых систем, стимулируя конкуренцию между квантовыми и классическими вычислительными платформами. В исследовании также рассматриваются перспективы практического использования квантовых процессоров. Одним из первых примеров может стать сертифицированное генерирование по-настоящему случайных чисел, требующее высокой вычислительной сложности и устойчивости к шумам. Серджио Бойксо (Sergio Boixo), руководитель квантовых исследований Google, в своём интервью для Nature отметил: «Если квантовые устройства не смогут продемонстрировать преимущество с помощью RCS, самого простого из примеров использования, то вряд ли они смогут это сделать в других задачах». Дорожная карта развития квантовых вычислений Google Работа Google представляет собой значительный вклад в развитие квантовых технологий. Хотя практическое применение квантовых устройств остаётся сложной задачей, такие направления, как сертифицированное генерирование случайных чисел, могут стать первым шагом к их коммерческому использованию. Несмотря на сложности, связанные с шумами, эксперименты Google показывают, что переход от теоретических исследований к практическому применению квантовых устройств становится всё более реальным. Источник: 3dnews.ru Комментарии: |
|