Биокомпьютеры на основе человеческого "мини-мозга" скоро смогут управлять роботами |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-10-01 11:57 Китайские учёные разрабатывают биокомпьютер, объединяющий органоиды человеческого мозга на чипе, с целью управления человекоподобными роботами. Интерфейс, получивший название MetaBOC, позволит нейронам получать, интерпретировать и реагировать на электрические сигналы. Это не только позволит роботам выполнять различные задачи автономно, но и повысит их способность к обучению. Интерфейсы "мозг-на-чипе" - это относительно новая концепция, в которой клетки человеческого мозга выращиваются на кремниевых чипах для управления электронными или бионическими устройствами. Даже на ранней стадии развития эти биокомпьютеры, включающие человеческие нейроны, обучаются быстрее и с гораздо меньшими затратами энергии, чем искусственные нейронные сети, используемые в настоящее время для ИИ. Один из первых концептов такого типа был разработан в Австралии в рамках проекта DishBrain. Исследователи вырастили около 800 000 нейронов на чипе и поместили их в симулированную среду. Пройдя через циклы обучения с подкреплением, кластер нейронов научился играть в игру pong (виртуальный пинг-понг) всего за 5 минут. "Эти биологические системы, даже такие базовые и несовершенные, как сейчас, все равно превосходят лучшие алгоритмы глубокого обучения", — рассказал изданию New Atlas Бретт Каган, главный научный сотрудник компании Cortical Labs, разработавшей концепцию DishBrain. Позже появились похожие системы, такие как Brainoware от Университета Индианы и Wetware computing от швейцарского стартапа FinalSpark. Проект MetaBOC направлен на интеграцию интерфейса "мозг-на-чипе" в человекоподобных роботов. Одна из целей концепции — интегрировать органоиды человеческого мозга в искусственные тела. Проект разрабатывается исследователями из Тяньцзиньского университета и Южного университета науки и технологий в Китае. Следует отметить, что изображения, на которых изображены маленькие роботы с мини-мозгами (как на фото ниже), являются лишь макетами, представляющими роботизированное применение нового интерфейса, а не реальными прототипами. Органоиды, выращенные с помощью ультразвуковой стимуляции Интерфейс, разработанный китайскими исследователями, состоит из двух частей: кремниевого чипа с электродами и органоида мозга, выращенного in vitro. Последний был создан с использованием человеческих плюрипотентных стволовых клеток для формирования трехмерных кластеров. В отличие от двухмерных клеточных культур, эти кластеры могут формировать сложные нейронные связи, сравнимые с таковыми в цельном мозге. Чтобы развить способность принимать и реагировать на электрические сигналы, органоиды выращивали, стимулируя их низкоинтенсивным ультразвуком. Чип позволяет им принимать и отправлять сигналы и, таким образом, взаимодействовать с роботами, к которым он подключен, для выполнения физических задач, таких как обход препятствий и манипулирование объектами, среди прочего. "Он [интерфейс] использует кодирование, декодирование и обратную связь со стимулом для взаимодействия с внешней информацией", — объясняет Минг Донг из Тяньцзиньского университета в пресс-релизе. Команда также планирует использовать искусственный интеллект для облегчения обработки информации. Кроме того, будет разработано программное обеспечение с открытым исходным кодом, которое будет выступать в качестве интерфейса между биокомпьютерами-на-чипе и другими электронными устройствами. По словам экспертов, это будет "первая в мире комплексная интеллектуальная система информационного взаимодействия "мозг-на-чипе" с открытым исходным кодом". Возможность восстановления повреждений мозга Помимо применения в робототехнике, исследователи считают, что их органоиды могут быть использованы для восстановления повреждений мозга. В другом исследовании, проведенном той же командой, было показано, что метод низкоинтенсивной ультразвуковой стимуляции значительно улучшил пролиферацию клеток-предшественников нейронов и созревание нейронов в органоидах коры головного мозга. Для дальнейшего изучения своей гипотезы специалисты пересадили органоиды, обработанные ультразвуковой методикой, в поврежденную соматосенсорную кору взрослых мышей. Результат: пересаженные кластеры показали продвинутый уровень созревания и повышенную активность гамма-волн (связанную с высоким уровнем концентрации). Кроме того, низкоинтенсивное ультразвуковое воздействие улучшило патологические нарушения в органоидных моделях, страдающих микроцефалией — состоянием, характеризующимся аномально маленьким черепом. Это говорит о том, что данная методика потенциально может стать методом лечения поражений мозга и нарушений его развития. "Органоиды человеческого мозга представляют собой замечательную платформу для моделирования неврологических расстройств и перспективный подход к восстановлению мозга", — поясняют исследователи в своей статье. Однако это исследование все еще находится на ранней стадии, и многие вопросы (такие, как эффективность и безопасность процедуры) остаются без ответа. Источник: new-science.ru Комментарии: |
|