Конечные поля |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-09-29 11:53 Константин Шрамов Поле — это множество, в котором можно складывать, умножать, вычитать и делить. Например, это можно делать с рациональными, действительными или комплексными числами. Помимо этого, такие операции можно производить и в некоторых конечных множествах — они и называются конечными полями. В начале курса я расскажу про самые простые свойства конечных полей: порядок конечного поля, единственность конечного поля данного порядка, структуру мультипликативной группы. Потом мы обсудим существование решений над конечными полями у полиномиальных уравнений, степень которых мала по сравнению с количеством переменных (теорема Шевалле-Варнинга), и обсудим применения конечных полей к вопросам, которые формулируются над полем комплексных чисел (например, существование неподвижных точек у инволюций аффинного пространства). Шрамов Константин Александрович — доктор физико-математических наук. Летняя школа «Современная математика», 20-25 июля 2024 г. Источник: vk.com Комментарии: |
|