Динамические системы и интегралы по траекториям: Общий метод анализа систем на основе подхода Фейнма |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-08-31 12:38 Никитин В.Н., Никитин Н.В. "Динамические системы и интегралы по траекториям: Общий метод анализа систем на основе подхода Фейнмана к квантовой механике". URSS. О книге: Под динамической системой понимается объект или математическая модель объекта, для которого задано начальное состояние и уравнения динамики, позволяющие определить дальнейшее изменение состояния объекта. Класс таких моделей достаточно широк и включает в себя детерминированные и стохастические системы, которые подразделяются на непрерывные и дискретные по времени и пространству. Уравнения классической и квантовой механики, электродинамики, динамики сплошных сред, как и большинство решаемых физикой задач, а также поведение систем под действием случайных возмущений относятся к динамическим системам. В книге рассмотрен общий метод анализа динамических систем на основе идеи лауреата Нобелевской премии Р. Фейнмана, изложенной в книге «Квантовая механика и интегралы по траекториям». При этом используются такие основные понятия, как начальное и конечное состояния и пространство состояний объекта, оператор эволюции, а также множество возможных (виртуальных) траекторий между начальным и конечным состояниями. Базовым считается принцип, что объект (система) не исчезает бесследно, то есть не может пропасть в начальный и возникнуть в конечный моменты времени. В любой момент времени система может быть обнаружена в одном из возможных состояний. В книге наряду с интерпретацией известных теоретических данных, изложенных в первых трех главах, приведены новые результаты, полученные на основе траекторного подхода. В четвертой и пятой главах развит приближенный метод вычисления спектров собственных значений уравнений Шрёдингера и Фоккера—Планка, основанный на аппарате интегралов по траекториям. В шестой главе рассматривается степень устойчивости нелинейных динамических систем. Используется понятие квазипотенциала между начальным и конечным состояниями. Квазипотенциал определяется как минимальное значение функционала действия, то есть характеризует минимальное внешнее воздействие, которое необходимо приложить к системе для перехода из начального состояния в конечное. При этом доказывается теорема о том, что квазипотенциал при условии положительной определенности представляет собой функцию Ляпунова. Книга предназначена для тех, кого интересуют законы поведения и устройство окружающего нас мира. Она может быть полезна для студентов, магистрантов и аспирантов, обучающихся по соответствующим специальностям, а также для ученых и специалистов-практиков, работающих в наукоемких областях. Об авторе: Выпускник Национального исследовательского ядерного университета «МИФИ». Окончил аспирантуру кафедры кибернетики НИЯУ «МИФИ». Один из авторов монографии «Автоматические системы и устройства наведения лазерных пучков» и 9 научных работ по анализу степени устойчивости и срыва управления в нелинейных динамических системах. Автор совместной с Н. В. Никитиным монографии — «ГОСПОЖА УДАЧИ: Прикладная теория вероятностей и диаграммная техника. Как легко и быстро решать прикладные задачи в области теории вероятностей при помощи подхода Фейнмана к квантовой механике» (М.: URSS). Подробнее: https://urss.ru/311491?src=vk Источник: urss.ru Комментарии: |
|