Резко врываемся в дату: чему учат и каким будет результат |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-07-20 11:29 Биг-дата — это русский вариант английского big data (большие данные). Смысл биг-даты в том, что у нас есть огромное количество данных о чём-то и мы на основе этих данных можем сделать какие-то выводы, что-то спрогнозировать или обучить нейронку. Биг-дата — это не одно, а несколько разных направлений в ИТ. У них общая основа, но различаются инструменты и подход к работе. Рассказываем, чему учат на разных направлениях и где это будет полезно. Как устроено бесплатное обучение в «Яндекс Практикуме» Коротко суть:
Направления в биг-дате Работа с биг-датой делится на аналитическую и инженерную. Аналитики работают с уже собранными данными — приводят их в порядок, анализируют, строят графики и модели. Инженеры и специалисты по Data Science делятся на две категории: те, кто занимается сбором данных, и те, кто потом занимается машинным обучением. Что общего у всех Все, кто работают с биг-датой, учатся сначала одним и тем же вещам: программированию, работе с базами данных и предварительной обработке. Программирование. Основной язык, на котором работают почти все дата-сайентисты в мире, — это Python. На нём можно написать любой скрипт для обработки данных и подключить много готовых библиотек. За что все любят Python Базы данных. Все данные должны где-то храниться, и чаще всего это SQL-базы данных. С ними нужно уметь работать: брать данные, сохранять, фильтровать и т. д. Предварительная обработка данных. Чтобы от данных был какой-то толк, с ними нужно предварительно поработать: проверить на дубли, пустые поля или неверные значения. Это то, что было общего у всех. Теперь разное. Чему учат аналитиков Задача аналитика — обработать большой массив информации и сделать на его основе какие-то выводы. Примеры:
Чтобы презентовать результаты своей работы в понятном и наглядном виде, аналитики используют сервисы визуализации данных, например Tableau. А дальше — техники и методы анализа, чем дольше работаешь, тем больше в них вникаешь. Tableau — сервис визуализации данных Как работают инженеры по сбору данных Вообще, эту работу может сделать и аналитик, и инженер машинного обучения, но иногда сбор становится отдельной задачей. В этом случае инженер:
Кто такой девопс и что он делает Для этого достаточно общих знаний из биг-даты плюс знание API того сервиса, откуда забираем данные. Но этому всё равно нужно учиться — сложно будет прийти в такой проект, если знаешь только базы данных или у тебя начальные навыки программирования на Python. Что такое API Чему учат и что делают специалисты по Data Science У этих ребят задачи технически намного сложнее, потому что они чаще всего работают с нейросетями — обучают их или программируют самостоятельно. Для этого надо знать много математики:
Кроме этого, будущим дата-сайентистам дают углублённые знания Python и учат их работе с нейросетями. Это значит — много программирования, библиотеки, фреймворки, API, базы данных, тестирование и облачные вычисления. В итоге всё это позволяет разработчикам создавать нейросети, заниматься компьютерным зрением, искусственным интеллектом, голосовыми помощниками и вообще быть впереди компьютерной науки. Начинающим программистам: что такое фреймворки и библиотеки Что по работе и деньгам В 2022 году спрос на тех, кто работает с биг-датой, такой:
По зарплатам вот средние цифры на второе полугодие 2022-го такие:
Где научиться Самый простой способ ворваться в биг-дату — прийти в Практикум на курсы «Аналитик данных» или «Специалист по Data Science». Учиться можно двумя способами: Обучение в обычном темпе длится от 6 до 9 месяцев, на буткемпе — в 2-3 раза быстрее. На выходе у вас портфолио с учебными проектами, навыки для работы в отрасли и помощь карьерного центра. Если интересно, как вообще устроены такие курсы, почитайте наш разбор обучения в Практикуме. Там всё как раз на примере курсов про биг-дату. Любите данные? Посмотрите вот это Возможно, у вас получится построить карьеру в мире дата-сайенса. Это новое направление, в котором очень нужны люди. Изучите эту сферу и начните карьеру в ИТ: старт — бесплатно, а после обучения — помощь с трудоустройством. Источник: thecode.media Комментарии: |
|