Мышонок Гарольд и его увлекательная жизнь после смерти

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Отрывок из книги программиста и специалиста по машинному обучению Сергея Маркова "Охота на электроовец. Большая книга искусственного интеллекта".

В наши дни нейробиологи обладают весьма изощрёнными инструментами для воссоздания так называемых коннект?мов — карт связей нейронов в нервной ткани. Один из наиболее интересных проектов в этой области осуществляется учёными из лаборатории Себастьяна Сеунга в Принстонском университете, а ранее — в MIT (Massachusetts Institute of Technology, Массачусетский технологический институт). Ближайшей целью проекта является создание карты связей нейронов сетчатки мышонка по имени Гарольд.

Сетчатка — это часть мозга, осуществляющая первичную обработку зрительной информации. Она была выбрана в качестве модельного объекта для обкатки технологий, необходимых для достижения долгосрочной научной цели — полного описания коннектома мозга человека.

По всей видимости, в силу того, что при жизни Гарольд был хорошим мышонком, после смерти его тельце не было отправлено в утиль (по крайней мере полностью). Мышиный мозг извлекли из черепной коробки и нарезали на тонкие слои при помощи микротома (инструмента для приготовления тонких срезов образцов). Полученные срезы пропустили через электронный микроскоп в Институте медицинских исследований Общества Макса Планка, в результате чего в 2010 г. был сформирован большой массив изображений?, который и использовали исследователи из MIT.

( Briggman?K.?L., Helmstaedter?M., Denk?W. (2011).

Wiring specificity in the direction-selectivity circuit of the retina / Nature, Vol. 471, Iss. 7337, pp. 183–188 ).

Когда сотрудники лаборатории осознали, что воссоздание карты связей одного-единственного нейрона требует около пятидесяти часов рабочего времени специалиста и картирование сетчатки мыши у группы из ста учёных займёт почти двести лет, стало ясно, что необходимо принципиально иное решение. И оно было найдено.

Им стало создание онлайн-игры EyeWire, в которой игроки соревнуются друг с другом в деле окраски фотографий срезов мышиного мозга.

Карта сетчатки состоит из множества частей (кубов), каждую из которыхдолжны обработать несколько игроков. Экран игры разделён на две части, слева — трёхмерная модель нейрона, которую можно поворачивать и двигать, справа — множество наложенных друг на друга снимков последовательно идущих слоёв. Прокручивая двумерные снимки сетчатки, можно

представить объёмную картину, при этом по модели вертикально движется прозрачная планка: так игра даёт понять, какой слой просматривает игрок.

Чтобы «восстановить» ветки нейрона, нужно закрасить соответствующие фрагменты на фотографиях.

После завершения работы над кубом программа сравнивает решения,

определяет, какое из них верное, и присуждает очки. Искать ошибки в нейронной карте приходится учёным и самим игрокам, поэтому в сообществе EyeWire создана строгая иерархия. Для каждой роли определены требования, возможности и обязанности. Продвинутые игроки делятся на «скаутов» (помечают подозрительные кубы), «жнецов» (исправляют ошибки), «модераторов» (поддерживают порядок в чате) и «менторов» (помогают игрокам).

В 2014 г., через два года после запуска EyeWire, сотрудники лаборатории сделали первое открытие и рассказали о нём в журнале Nature. Учёным удалось выяснить, как именно млекопитающие распознают движение. То, что в процессе участвует не только зрительная кора (часть коры головного мозга, отвечающая за обработку зрительного сигнала), но и сетчатка, уже было известно, но сам механизм подробно изучен не был?.

( Kim?J.?S., Greene?M.?J., Zlateski?A., Lee?K., Richardson?M., Turaga?S.?C., Purcaro?M., Balkam?M.,

Robinson?A., Behabadi?B.?F., Campos?M., Denk?W.,

Seung?H.?S. (2014). Space–time wiring specificity supports direction selectivity in the retina /

Nature, Vol. 509, Iss. 7500, pp. 331–336 ).

Когда свет попадает на клетки фоторецепторов, они передают сигнал биполярным клеткам?*, затем амакриновым?** — и, наконец, ганглионарным?***.

Учёные проанализировали 80 амакриновых нейронов (29 из них помогли описать игроки EyeWire) и соединённые с ними биполярные клетки. Они заметили, что разные типы биполярных клеток по-разному соединяются с амакриновыми нейронами: биполярные клетки одного типа располагаются далеко от тела (сомы) звёздчатой клетки и передают сигнал быстро, клетки другого типа располагаются близко, но сигнал передают с задержкой.

* Биполярные клетки (bipolar cells) обычно имеют веретенообразную форму и два отростка (один аксон и один дендрит), именно поэтому их и называют биполярными. В сетчатке они соединяют через синапсы одну колбочку или несколько палочек зрительной системы с одной ганглионарной или амакриновой клеткой (последнее характерно для биполярных клеток палочек).

** Амакриновые клетки (amacrine cells) получили название от греческой приставки ? (не-) и слов

(длинный) и ??? (волокно). Амакриновые клетки — это тормозящие нейроны, выходы которых соединяются с ганглионарными клетками сетчатки и/или с биполярными клетками.

*** Ганглионарные клетки (retinal ganglion cells, RGC) — слой нейронов, расположенных в непосредственной близости от внутренней поверхности сетчатки. Они генерируют сигналы, которые затем передаются в зрительную кору.

Если стимул в поле зрения удаляется от тела (сомы) звёздчатой амакриновой клетки, то первой активизируется «медленная» биполярная клетка, затем — «быстрая». Тогда, несмотря на задержку, сигналы клеток обоих типов достигают звёздчатого амакринового нейрона одновременно, он испускает сильный сигнал и передаёт его дальше ганглионарным клеткам. Если же стимул движется по направлению к соме, сигналы разных типов биполярных нейронов не «встречаются» и сигнал амакриновой клетки получается слабым?.

Разумеется, игра EyeWire в силу присущей ей некоторой криповатости не входит в топы рейтингов онлайн-игр, а следовательно, объём людских ресурсов, привлекаемых в рамках этого образчика гражданской науки [civil science], весьма ограничен. Однако создатели и не рассчитывали на то, что в данном проекте можно будет полагаться только на ресурсы краудсорсинга. Размеченные игроками данные были использованы для того, чтобы обучить на них соответствующие модели машинного обучения, которые затем смогут выполнять раскраску самостоятельно?994. Своеобразная ирония заключается в том, что в основе этих моделей лежат свёрточные нейронные сети (о них мы поговорим подробно несколько позже), созданные, в свою очередь, под влиянием научных данных, полученных в ходе изучения зрительной коры головного мозга.

Полная электронная версия книги "Охота на электроовец. Большая книга искусственного интеллекта" доступна бесплатно - на сайте Сергея Маркова.

Иллюстрации из книги Сергея Маркова:


Источник: vk.com

Комментарии: