О прикладном использовании больших языковых моделей |
||
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-05-27 11:58 реализация искусственного интеллекта, компьютерная лингвистика, большие данные big data Сразу к делу – есть ли положительный опыт интеграции в научно-исследовательские проекты в области экономики и финансов? Нет, ни одна модель не функциональна, ничего не работает. Отсутствие встроенного контроля верификации выходных данных не позволяет использовать ГИИ для серьёзных научно-исследовательских работ и в рамках бизнес-операций. По умолчанию, любой сгенерированный контент от ГИИ рассматривается как фейковый, а следовательно, нет доверия к системе. Время и ресурсы, затраченные на принудительную проверку фактов, превышают потенциальную выгоду от использования ГИИ в серьёзных задачах, которые оказывают влияние на систему принятия решений. Вторая проблема — необучаемость и ограниченная длина контекстного окна*. Как это проявляется на практике? *Контекстное окно обозначает максимальное количество токенов, которые модель может учитывать одновременно при обработке текста; грубо говоря, это глубина памяти ГИИ в рамках открытой сессии. Не слишком сложная база данных с иерархической структурой данных требует примерно 6-7 страниц технического задания с описанием структуры данных, параметров, связей и постановки задач для анализа данных. Написание 6-7 страниц строго формализованного текста — большая работа на три часа. Изначально ГИИ никогда не генерирует корректного результата, если постановка задачи предполагает глубину аналитики с множеством связанных переменных. Соответственно, требуется доводка и калибровка способности ГИИ корректно интерпретировать базу данных и понимать поставленную задачу. Это ещё работа на три часа. В итоге 6-7 часов уходит просто на то, чтобы попытаться обучить ГИИ адекватно интерпретировать структуру данных и понимать цель анализа. К этому моменту ширина контекстного окна заканчивается, но даже если удастся уложиться, происходит баг системы, который я назвал «ментальный сквиз». В чём проявляется «ментальный сквиз»? Чем сложнее задача и чем больше количество правок вносится в интерпретатор ГИИ, тем быстрее наступает момент «глубоких галлюцинаций», когда модель полностью теряет способность к пониманию и начинает путаться в показаниях. По мере правок качество выходного контента растёт, а потом наступает «ментальный сквиз», и качество резко обрушается, что означает — модель сломалась, несите новую, т.е. требуется новая открытая сессия и всё начинать сначала. Связана ли эта проблема с программной составляющей или это внутренние архитектурные недостатки, однако правда в том, что разработка сложных проектов исключена полностью. Те функции аналитики и анализа данных, которые демонстрируются в рекламных роликах ГИИ, показывают простейшие функции, которые реализуются штатным функционалом Excel за несколько секунд, тогда как написание запросов в ГИИ требует минут. Т.е. даже здесь эффективность под вопросом. Более сложные расчёты крайне неэффективны в рамках реализации через ГИИ — здесь сразу мимо. Какая комбинация работает? То, что работало раньше: Excel + SQL + Python и теперь ГИИ, но не в рамках аналитики, а с точки зрения справочного бюро по документации/инструкциям + помощь в написании кода и формул. Причём процесс написания кода также не так однозначен. В практическом применении ГИИ (ChatGPT-4 как наиболее сбалансированном) абсолютно не тянет работу с данными. Data Science, data mining, data analytics — это не про ГИИ. Текущая оценка — около 2 из 10, т.е. совсем плохо, по крайней мере, в той публичной версии, как это всё представлено. Все надстройки в Excel на базе ChatGPT, в том числе официальная от Microsoft — полная туфта. Выглядят многообещающе, но на практике с большим набором данных и многоуровневыми зависимостями не работают так, как должны. Сводные таблицы и автоматический структурный анализ можно делать и имеющимися ресурсами без использования ГИИ. ГИИ не улучшает работу в рамках дата аналитики, а скорее ухудшает с точки зрения качества данных и скорости работы. В рамках анализа данных Excel + SQL + Python решают задачи на порядки быстрее, чем хвалёный ГИИ. На данном этапе ГИИ в контексте научно-исследовательской базы близок к пустому месту. Источник: porti.ru Комментарии: |
|