Вероятностная теория чисел

МЕНЮ


Главная страница
Поиск
Регистрация на сайте
Помощь проекту
Архив новостей

ТЕМЫ


Новости ИИРазработка ИИВнедрение ИИРабота разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика

Авторизация



RSS


RSS новости


Алексей Буфетов / ЛШСМ

Цель данного курса — показать, как вероятностные методы и интуиция помогают отвечать на теоретико-числовые вопросы. Я расскажу про два существенно разных сюжета.

1. Правильные гипотезы

Верно ли, что простых чисел-близнецов бесконечно много? Верно ли, что любое четное число раскладывается в сумму двух простых? Ответы на эти вопросы, формально говоря, еще не получены. Однако, существуют правдоподобные гипотезы, дающие куда более точную информацию: так, если B(n) — количество простых чисел-близнецов, меньших n, то lim_{n??}B(n)/(C*n/ln?(n))=1 (значение константы C также предсказывается). Эта гипотеза следует из простых вероятностных соображений и подтверждается численными данными. Вероятностные «прикидки» позволяют сделать предположения и в ряде других известных вопросов (например, гипотеза Гольдбаха, гипотеза Римана), которые тоже подтверждаются численными экспериментами.

Кажется странным, что в детерминированной ситуации (число уж либо простое, либо нет) оказывается полезным вероятностный подход. Причину можно попытаться описать следующим образом: простые числа определяются свойствами относительно умножения, а относительно сложения никакой ощутимой «структуры» у них нет. Поэтому относительно сложения они ведут себя «случайным» образом.

2. Типичное число простых множителей натурального числа

Пусть w(n) — число различных простых делителей натурального числа n. Выберем n равномерно случайно из {1,2,…,N} для большого N. Чему равно типичное значение w(n)?

Оказывается, для почти всех n мы имеем w(n)?ln(ln(n)). Более того, мы докажем теорему Эрдеша-Каца для w(n). Эта теорема утверждает, что w(n)-ln(ln(n)) имеет порядок sqrt{ln(ln(n))} и описывается гауссовским распределением.

На этом материале мы познакомимся с базовыми теоремами теории вероятностей: законом больших чисел и центральной предельной теоремой.

Программа:

* Базовые понятия: конечное вероятностное пространство, случайные величины, независимость. Множество {1,2,…,N} как вероятностное пространство. Делимость на различные простые как (асимптотически) независимые события. Вероятностная модель Крамера простых чисел.

* Улучшенная модель Крамера. Гипотезы: асимптотика количества простых чисел-близнецов, асимптотика количества разложений четного числа в сумму двух простых.

* Закон больших чисел и центральная предельная теорема для бернуллиевских величин. Эквивалентная формулировка гипотезы Римана: функция Мебиуса «случайна».

* Теорема Эрдеша-Каца: почти всякое натуральное число n имеет примерно ln(ln(n)) простых делителей. Более того, число простых делителей удовлетворяет центральной предельной теореме.

По курсу предполагается выдача листочков с задачами. Никаких предварительных знаний по теории вероятностей и теории чисел не предполагается.

Материалы к лекциям: https://forallxyz.net/a-538

Буфетов Алексей Игоревич

Летняя школа «Современная математика», г. Дубна

20-27 июля 2016 г.


Источник: forallxyz.net

Комментарии: