История возникновения математической логики |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2024-01-14 16:53 Элемент математическая логика Математическая логика тесно связана с логикой и обязана ей своим возникновением. Основы логики, науки о законах и формах человеческого мышления (отсюда одно из ее названий - формальная логика), были заложены величайшим древнегреческим философом Аристотелем (384—322 гг. до н. э.), который в своих трактатах обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего. Вклад Аристотеля в логику весьма велик, недаром другое ее название - Аристотелева логика. Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить две эти науки, а именно свести размышление, или, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатов Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств. В дальнейшем многие философы и математики развивали отдельные положения логики и иногда даже намечали контуры современного исчисления высказываний, но ближе всех к созданию математической логики подошел уже во второй половине XVII века выдающийся немецкий ученый Готфрид Вильгельм Лейбниц (1646 - 1716), указавший пути для перевода логики «из словесного царства, полного неопределенностей, в царство математики, где отношения между объектами или высказываниями определяются совершенно точно» . Лейбниц надеялся даже, что в будущем философы, вместо того чтобы бесплодно спорить, станут брать бумагу и вычислять, кто из них прав . При этом в своих работах Лейбниц затрагивал и двоичную систему счисления. Следует отметить, что идея использования двух символов для кодирования информации очень стара. Австралийские аборигены считали двойками, некоторые племена охотников-сборщиков Новой Гвинеи и Южной Америки тоже пользовались двоичной системой счета. В некоторых африканских племенах передают сообщения с помощью барабанов в виде комбинаций звонких и глухих ударов. Знакомый всем пример двухсимвольного кодирования - азбука Морзе, где буквы алфавита представлены определенными сочетаниями точек и тире. После Лейбница исследования в этой области вели многие выдающиеся ученые, однако настоящий успех пришел здесь к английскому математику-самоучке Джорджу Булю (1815—1864), целеустремленность которого не знала границ. Материальное положение родителей Джорджа (отец которого был сапожным мастером) позволило ему окончить лишь начальную школу для бедняков. Спустя какое-то время Буль, сменив несколько профессий, открыл маленькую школу, где сам преподавал. Он много времени уделял самообразованию и вскоре увлекся идеями символической логики. В 1847 году Буль опубликовал статью «Математический анализ логики, или Опыт исчисления дедуктивных умозаключений», а в 1854 году появился главный его труд «Исследование законов мышления, на которых основаны математические теории логики и вероятностей». Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключательных схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в XX столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера. Отдельные положения работ Буля в той или иной мере затрагивались и до, и после него другими математиками и логиками. Однако сегодня в данной области именно труды Джорджа Буля причисляются к математической классике, а сам он по праву считается основателем математической логики и тем более важнейших ее разделов - алгебры логики (булевой алгебры) и алгебры высказываний. Большой вклад в развитие логики внесли и русские ученые П.С. Порецкий (1846-1907), И.И. Жегалкин (1869-1947). В XX веке огромную роль в развитии математической логики сыграл Д. Гильберт (1862-1943), предложивший программу формализации математики, связанную с разработкой оснований самой математики. Наконец, в последние десятилетия XX века бурное развитие математической логики было обусловлено развитием теории алгоритмов и алгоритмических языков, теории автоматов, теории графов (С.К. Клини, А. Черч, А.А Марков, П.С. Новиков и многие другие). Источник: vk.com Комментарии: |
|