Мир как реализованные решения математических уравнений |
||
|
МЕНЮ Главная страница Поиск Регистрация на сайте Помощь проекту Архив новостей ТЕМЫ Новости ИИ Голосовой помощник Разработка ИИГородские сумасшедшие ИИ в медицине ИИ проекты Искусственные нейросети Искусственный интеллект Слежка за людьми Угроза ИИ ИИ теория Внедрение ИИКомпьютерные науки Машинное обуч. (Ошибки) Машинное обучение Машинный перевод Нейронные сети начинающим Психология ИИ Реализация ИИ Реализация нейросетей Создание беспилотных авто Трезво про ИИ Философия ИИ Big data Работа разума и сознаниеМодель мозгаРобототехника, БПЛАТрансгуманизмОбработка текстаТеория эволюцииДополненная реальностьЖелезоКиберугрозыНаучный мирИТ индустрияРазработка ПОТеория информацииМатематикаЦифровая экономика
Генетические алгоритмы Капсульные нейросети Основы нейронных сетей Распознавание лиц Распознавание образов Распознавание речи Творчество ИИ Техническое зрение Чат-боты Авторизация |
2023-07-19 12:51 Первоначальной основой для построения любой физической теории служит наблюдаемый мир, и успех или неуспех теории определяется из сравнения её с наблюдениями, с экспериментом. Однако, по мере продвижения в область всё более фундаментальных и всё менее непосредственно наблюдаемых явлений, значительную роль начинает играть математическая структура теории. Конечно любая теория должна быть математически корректной, но оказывается, что достичь такой корректности тем труднее, чем на большую общность претендует данная теория. Природа как бы сопротивляется произвольным построениям и требует, чтобы мы угадали ту, по всей видимости, единственную, наиболее фундаментальную структуру. Такую структуру также принято называть теорией. Таким образом, слово теория используется в двух значениях. Во-первых — это конкретный аппарат для описания того или иного объекта физической реальности, имеющий определённый набор уравнений, законов и правил. Во-вторых, — это именно та искомая сущность, которую нужно сначала отыскать, а потом научиться описывать в рамках конкретной теории в первом смысле этого слова. Таким образом, развитие фундаментальной физики идёт рука об руку с познанием математических структур, которые должны присутствовать в точной науке. Хорошо известным примером служит классическая теория гравитации, или общая теория относительности Эйнштейна. Согласно этой теории вся наблюдаемая в настоящий момент Вселенная, в космическом масштабе, — просто решение системы определённых уравнений, так называемых уравнений Эйнштейна. Но для того, чтобы эти уравнения сформулировать, их автору пришлось разработать целый ряд аспектов неевклидовой (римановой) геометрии. При этом математическая состоятельность уравнений требует, чтобы материя подчинялась определённым законам: она не может быть распределена в пространстве произвольно, и ограничения на её поведение возникают из одной только математической корректности. Другой замечательный пример того, как требования математики позволяют даже предсказывать физические эффекты, — теория электромагнетизма. Описывающие его уравнения носят имя Максвелла. Формулируя в середине XIX века эти уравнения, Максвелл имел целью отразить в них все известные тогда сведения об электромагнетизме. Сделав это, он увидел, что уравнения оказались математически противоречивы (приводят к равенству 1 = 0). Максвеллу пришлось модифицировать уравнения так, чтобы восстановить их корректность. И оказалось, что именно такие модифицированные уравнения допускают невероятное по тем временам явление: существование электромагнитного поля, распространяющегося сколь угодно далеко от источника, то есть электромагнитных волн! Таким образом, электромагнитные волны были предсказаны, исходя только из анализа математических уравнений. Этот эпизод из истории науки способствует восприятию мира как реализованных решений каких-то уравнений; дело лишь за тем, чтобы угадать правильные уравнения. Алексей Семихатов. Суперструны: на пути к теории всего. «Наука и жизнь» № 2, 1997 г., стр. 18 — 24. Источник: vk.com Комментарии: |
|